
Monitoring Private Blockchain Performance on Non-mining Nodes

Xuan Chen, Kien Nguyen, and Hiroo Sekiya

Graduate School of Science and Engineering, Chiba University
1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba, Japan

Email: chenxuan, nguyen@chiba-u.jp, sekiya@faculty.chiba-u.jp

Abstract—A private blockchain is potentially used to
maintain IoT systems, such as a smart home. In such
a blockchain, the mining task (i.e., computation for gen-
erating blocks) is too heavy for resource-limited IoT de-
vices. Thus, a powerful node with sufficient resources will
serve as a miner for the whole blockchain network. Mean-
while, the other nodes operate without the mining function
(i.e., non-mining nodes). Hence, understanding the perfor-
mance of non-mining IoT nodes is essential for the private
blockchain. In this paper, we aim to monitor the perfor-
mance of the real devices (i.e., Raspberry Pi), which form
a blockchain using the popular private Ethereum. We use
on-device tools to track disk space usage, memory usage,
CPU utilization, and network usage on non-mining nodes.
The collected results within two hours show that it is feasi-
ble to monitor the nodes’ performance.

1. Introduction

A blockchain is composed of a series of blocks, in which
each block includes a block body containing transactions
and a block header containing the previous block’s cryp-
tographic hash. When generating a new block, the nodes
conduct a proof-of-work (PoW) algorithm, that aims to
search an answer to a hard-to-solve, easy-to-verify math-
ematical problem. The generated block with the answer
in the header is propagated to all other nodes. The nodes
verify and execute transactions in the block body. A le-
gal block will be successfully verified and attached to the
blockchain on all nodes.

Ethereum is one of the most popular open-source
blockchain platforms [1]. One of the distinguishing fea-
tures of Ethereum is allowing a node uploading of au-
tomatically executed codes known as smart contracts.
Ethereum supports both the public and private blockchain
networks [2]. The former network enables participants to
join without any limitations. Meanwhile, the latter usually
requests participants to get permission before entering the
blockchain. The private Ethereum has found its feasibility
in several IoT applications [3].

The Internet of Things (IoT) include devices such as
sensors or actuators, which are transferring data without
human interaction. However, the traditional IoT systems
rely on a centralized model, in which a central entity is
in charge of data transmission and system management.
When the number of IoT devices increases, the centralized

model faces many problems, including scalability and se-
curity [4]. The blockchain technologies can be combined
with IoT to loosen those problematic issues [5]. However,
most of the current blockchains are computation heavy in
solving the PoW on resource-limited IoT devices. One
of the solutions for that is to introduce a powerful cen-
tral miner [6], which achieves the complicated computa-
tion work. The other IoT devices, which are parts of the
blockchain network, operate other non-mining functions.
In [7], [8], the authors build a smart home architecture that
contains several local private blockchain networks. In each
private network, a node is elected as a central miner that
can communicate with other networks’ miners. In [9], the
authors present another Ethereum based smart home sys-
tem, that integrates a central miner and several non-mining
nodes. The miner is installed on a powerful computer, man-
aging data delivery, and storage.

Since the blockchain-IoT applications are still in an early
stage, understanding their performance is one of the most
critical issues. In [10], the authors proposed a log-based
real-time framework to monitor Ethereum, but the focus
is on the public networks. The work in [11] introduces
an evaluation framework for analyzing private blockchain
performance. In [12], the authors extend [11]’s evaluation
with variations workloads. Both the works, however, have
measured the performance metrics on the mining nodes.
In [13], the authors have characterized latency in the pri-
vate Ethereum network. Different from them, we aim to
explore the feasibility of monitoring the non-mining nodes
in private blockchains.

In this paper, we present a method to monitor the pri-
vate blockchain system with the operating system’s internal
commands. We first build a private Ethereum blockchain
network and deploy a smart contract. The non-mining
nodes run the Ubuntu Mate operating system. The Web3.js
library [14] is used to interact with the smart contract. We
use a monitoring script that captures the log information of
disk space usage, memory usage, CPU utilization, and net-
work throughput. Then we edit crontab [15] on the Linux
systems to execute the script every minute. The monitored
results reveal the feasibility of the method with the perfor-
mance values of non-mining nodes.

The rest of the paper is organized as follows. Section 2
describes our monitoring methodology. In Section 3, we
present the monitoring results on a real blockchain IoT-
based network. Finally, Section 4 concludes the paper.

- 154 -

2020 International Symposium on Nonlinear Theory and Its Applications,

NOLTA2020, Virtual, November 16-19, 2020

Figure 1: Private blockchain structure in experiments

2. Methodology

Ethereum blockchains have different transmission pro-
tocols, such as Ethereum Wire Protocol (ETH) [16] and
Light Ethereum Subprotocol (LES) [17]. The nodes fol-
lowing ETH can be in the f ull or f ast mode. In the former,
the nodes will download all previous blocks and execute
transactions to generate the state tree, which is a mapping
between accounts’ addresses and account states (e.g., ac-
count balance). In the latter, the nodes download blocks
and the state tree instead of re-building it. On the con-
trary, in the light mode, nodes only download block head-
ers on demand. Moreover, they neither mine blocks nor
verify transactions since they lack the state tree. To max-
imize nodes’ functionality and ensure the security, we set
all nodes in the f ull mode.

To mine blocks, a device needs enough memory space
to generate directed acyclic graphs (DAG), which helps
Ethereum blockchain nodes search for the PoW answer.
Also, a sufficient CPU is required to mine a block within an
acceptable time. Since the IoT device is resource-limited,
a laptop is introduced for the tasks in our private Ethereum
blockchain.

We monitor the private Ethereum blockchain, which has
a linear structure, as shown in Fig. 1. In the figure, node 0
is the laptop serving as the miner. Other nodes (e.g., nodes
1 to 4) are resource-limited IoT devices. In this blockchain
network, transactions (Txs) are sent from IoT nodes and
synchronized on every node. The mining node executes
PoW to generate blocks, which are propagated hop by hop.
On each node, we enable monitoring tools, which are com-
bined into a script. The monitoring script contains the fol-
lowing items.

• Monitoring disk space usage: Since Ethereum stores
old blocks in a disk, hence it is worthy of investigating
the disk usage. We use the Linux tool named df [18]
to get the values of disk space usage.

• Monitoring memory usage: Ethereum stores recent
blocks and pending transactions in an IoT node’s
memory. Therefore, the memory space relates to the
capacity of achieving transactions. The monitoring
values of memory usage can be obtained with the
free [19] tool.

• Monitoring CPU utilization: Besides the miner, non-

Table 1: Details of RPI nodes
Processor 4x Cortex-A53 1.4 GHz
Memory 1 GB
Storage 16 GB MicroSDHC
OS Ubuntu Mate 18.04
Ethereum client Geth 1.9.14-stable

mining Ethereum nodes need to spend CPU resources
with the formation of its transactions and verification
of transactions and blocks from the others. Under-
standing the CPU utilization is, therefore, essential,
especially on the IoT devices. We use the iostat [20]
tool to get the values of the average CPU utilization.

• Monitoring network throughput: Ethereum nodes
communicate with each other continuously to ex-
change states, propagate transactions and blocks
through its underlying network. Therefore, network
throughput plays an important role in understanding
the whole blockchain performance. We log and read
the accumulated bytes of data transmitted and re-
ceived from the /proc/net/dev file on the IoT de-
vices’ operating system.

The monitoring script is integrated with the cron (i.e.,
in crontab), a built-in Linux utility. The utility is a time-
based scheduler that executes the script periodically. This
monitoring method has a negligible impact on the running
blockchain system comparing with the RPC-based way.
Additionally, the script can be extended with other parame-
ters such as I/O speed, load average, and CPU temperature.

3. Monitoring Private Ethereum

3.1. Experiment Setup

In this work, we use the Raspberry Pi 3 Model B+ (RPI)
IoT devices as the non-mining nodes. The details of PRI
nodes are shown in Table 1. Geth [21], which is the offi-
cial implementation of Ethereum nodes in Golang, is pre-
viously deployed on all nodes. We first initialize Geth on
each device in the f ull mode with a custom genesis file,
which defines a low difficulty to have a quick mining pro-
cess. Second, we implement a smart contract, which can
write a string to the blockchain and read the current string.
Third, we use the Web3.js library on each RPI node to in-
teract with the smart contract. We write a script to send
transactions to write information to the smart contract ev-
ery second. The miner collects transactions and generates
blocks through the mining process. Finally, we modify the
crontab on each device to execute the monitoring script ev-
ery minute. With those preparations, we have monitored
the private Ethereum blockchain for two hours. The results
are presented as follows.

- 155 -

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120

D
is

k
sp

ac
e

us
ag

e
(M

B
)

Time (minutes)

node1

node2

node3

node4

Figure 2: Disk space increment on non-mining RPI nodes

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120

U
se

d
m

em
or

y
(M

B
)

Time (minutes)

node1

node2

node3

node4

Figure 3: Memory occupation on non-mining RPI nodes

3.2. Result

3.2.1. Disk space usage

The increment of used disk space on each node is shown
in Fig. 2. In 120 minutes, the mining node generates 647
blocks, which contain about 28800 transactions. Most of
the blocks are stored in disk space. The size of a block
depends on the number of transactions inside. An empty
block takes 537 Bytes space, and each transaction takes
about 200 Bytes (various on different types of transactions.)
Moreover, the disk usage will not decrease since each node
keeps a full copy of the entire blockchain.

3.2.2. Memory usage

In our experiments, all the RPI nodes consume 256 KB
swap space, which is negligible. Thus, we present the
memory variation on each non-mining node in Fig. 3. It
indicates RPI nodes need approximately 650 MB memory.
The memory is consumed by unverified transactions and
child processes created by Geth, and remain stable at the
front half of the figure. In the back half, memory usages
drop because some transactions are timeout and removed.

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 0 20 40 60 80 100 120

C
P

U
 u

sa
ge

 (%
)

Time (minutes)

node1

node2

node3

node4

Figure 4: CPU utilization on non-mining RPI nodes

 0

 10

 20

 30

 40

 50

node1 node2 node3 node4

N
um

be
r o

f b
yt

es
 (M

B
)

TX (Transmit)
RX (Receive)

Figure 5: TX and RX bytes on each RPI after two hours

Besides, the memory usage rises and drops at both ends of
the line, which is the start and close of Geth processes.

3.2.3. CPU utilization

The CPU utilization rate of each node is shown in Fig. 4.
The RPI nodes consume approximately 2% of the CPU be-
cause the verification of blocks and transactions don’t re-
quire too much calculation. On the contrary, the mining
process consumes almost all of the CPU on the laptop. The
CPU utilization is slowly growing because iostat com-
mand calculates the average CPU time since the system
was booted.

3.2.4. Network throughput

We first monitor the idle situation, in which the nodes
are connected without mining or sending transactions. The
nodes keep confirming the peer connections and checking
the highest block. We then investigate the running situa-
tion, in which the miner starts mining, and all non-mining
nodes keep submitting transactions one per second. Fig-
ure 5 shows the amount of transmitted and received data on
the wireless interface of each RPI in the running situation.

- 156 -

Table 2: Throughput on RPI nodes (Bytes/s)
Node 1 Node 2 Node 3 Node 4

Idle 232.63 219.65 222.94 122.78
Running 4837.23 4623.88 4759.25 2042.71

The first three nodes transmit more data than received be-
cause they have two peers to propagate, while node 4 only
has one. We calculate the total throughput of both situa-
tions in Table 2. The throughput of node 4 in both situa-
tions is approximately half of the other nodes.

4. Conclusion

In this paper, we have shown the performance monitor-
ing of non-mining nodes in an Ethereum blockchain net-
work. Our built blockchain has four RPI nodes serving
as non-mining nodes. We upload a smart contract to store
string sent from RPI nodes and use the Web3.js library to
interact with it. We then use Linux monitoring tools and
execute the monitoring tasks in a script with crontab. We
have collected the data of disk space usage, memory us-
age, CPU utilization, and network usage on the RPI nodes
for 2 hours. The results show the method is feasible, and
also present the performance of non-mining nodes. The
monitoring script can be extended to include many other
parameters.

Acknowledgment

This work was supported by JSPS KAKENHI Grant
Number 19K20251, 20H04174. Additionally, Kien
Nguyen is supported by the Leading Initiative for Excel-
lent Young Researchers (LEADER) program from MEXT,
Japan.

References

[1] G. Wood, “Ethereum: A secure decentralised gen-
eralised transaction ledger.” https://ethereum.
github.io/yellowpaper/paper.pdf. (accessed:
2020-08-16).

[2] K. Wüst and A. Gervais, “Do you need a
blockchain?,” in Proc. IEEE CVCBT, pp. 45–54,
2018.

[3] O. Novo, “Blockchain meets iot: An architecture for
scalable access management in iot,” IEEE Internet of
Things Journal, vol. 5, no. 2, pp. 1184–1195, 2018.

[4] J. Wurm, K. Hoang, and O. Arias, “Security analysis
on consumer and industrial iot devices,” in Proc. ASP-
DAC, pp. 519–524, 2016.

[5] K. Christidis and M. Devetsikiotis, “Blockchains and
smart contracts for the internet of things,” IEEE Ac-
cess, vol. 4, pp. 2292–2303, 2016.

[6] H. Rathore, A. Mohamed, and M. Guizani, “A survey
of blockchain enabled cyber-physical systems,” Sen-
sors, vol. 20, no. 1, p. 282, 2020.

[7] A. Dorri, S. S. Kanhere, and R. Jurdak, “Blockchain
in internet of things: challenges and solutions,” arXiv,
2016.

[8] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gau-
ravaram, “Blockchain for iot security and privacy:
The case study of a smart home,” in Proc. IEEE Per-
Com workshops, pp. 618–623, 2017.

[9] Y. N. Aung and T. Tantidham, “Review of ethereum:
Smart home case study,” in Proc. INCIT, pp. 1–4,
2017.

[10] P. Zheng, Z. Zheng, X. Luo, X. Chen, and X. Liu,
“A detailed and real-time performance monitor-
ing framework for blockchain systems,” in Proc.
IEEE/ACM ICSE-SEIP, pp. 134–143, 2018.

[11] T. T. A. Dinh, J. Wang, G. Chen, and R. Liu,
“Blockbench: A framework for analyzing private
blockchains,” in Proc. ACM International Conference
on Management of Data, pp. 1085–1100, 2017.

[12] S. Pongnumkul, C. Siripanpornchana, and S. Tha-
jchayapong, “Performance analysis of private
blockchain platforms in varying workloads,” in Proc.
IEEE ICCCN, pp. 1–6, 2017.

[13] X. Chen, K. Nguyen, and H. Sekiya, “Characterizing
latency performance in private blockchain network,”
in Proc. MONAMI, 2020. (accepted).

[14] “web3-npm.” https://www.npmjs.com/package/
web3. (accessed: 2020-08-15).

[15] “crontab-linux man page.” https://linux.die.
net/man/1/crontab. (accessed: 2020-08-14).

[16] “Ethereum wire protocol (eth).” https:

//github.com/ethereum/devp2p/blob/

master/caps/eth.md. (accessed: 2020-08-04).

[17] “Light ethereum subprotocol (les).” https:

//github.com/ethereum/devp2p/blob/

master/caps/les.md. (accessed: 2020-08-04).

[18] “df-linux man page.” https://linux.die.net/
man/1/df. (accessed: 2020-08-14).

[19] “free-linux man page.” https://linux.die.net/
man/1/free. (accessed: 2020-08-14).

[20] “iostat-linux man page.” https://linux.die.

net/man/1/iostat. (accessed: 2020-08-14).

[21] “Go ethereum.” https://geth.ethereum.org/.
(accessed: 2020-08-14).

- 157 -

