
Characterizing Latency Performance
in Private Blockchain Network

Xuan Chen, Kien Nguyen(B), and Hiroo Sekiya

Graduate School of Science and Engineering,
Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba, Japan

{chenxuan,nguyen}@chiba-u.jp, sekiya@faculty.chiba-u.jp

Abstract. There has recently been an increasing number of blockchain
applications in different realms. Among the popular blockchain tech-
nologies, Ethereum is an emerging platform featuring smart contracts
with the public Ethereum associated to the Ether currency. Besides, the
private Ethereum has been gaining interest due to its applicability to
the Internet of Things. An Ethereum blockchain network includes dis-
tributed records that are immutable and transparent through replicating
among network nodes. Ethereum manages information in blocks that are
submitted to the chain as transactions. This paper aims to characterize
latency performance in the private Ethereum blockchain network. Ini-
tially, we clarify two perspectives of latency according to the lifecycle of
transactions (transaction-oriented and block-oriented latency). We then
construct a real private blockchain network with a laptop and Raspberry
Pi 3b+ for the latency measurement. We write and deploy a smart con-
tract to read and write data to the blockchain and measure the latencies
in a baseline and realistic scenario. The experiment results reveal the
latencies-hop correlation, as well as the latencies’ relation in different
workloads. Moreover, the blockchain network spends averagely 63.92 ms
(except the mining time) to take one transaction into effect in one hop.

Keywords: Private blockchain · Ethereum · Latency ·
Transaction-oriented · Block-oriented

1 Introduction

Blockchain technology has been gaining popularity with the applications in many
realms, including finance [1], healthcare [2], and the Internet of Things (IoT) [3].
A blockchain network is a distributed ledger, which can be replicated and shared
among its nodes. Blockchain networks are transparent because any node can view
all historical records. Also, the records are immutable because they are reserved
eternally under 51% rule [4]. Thus, using blockchain, we can build a network that
allows nodes to share information without trusting each other. All information
submitted to a blockchain is formed as transactions. The mining nodes, which
hold a full copy of the blockchain, can verify transactions and generate new blocks
through the proof-of-work (PoW) consensus protocol. The blockchain networks

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Published by Springer Nature Switzerland AG 2020. All Rights Reserved

S. W. Loke et al. (Eds.): MONAMI 2020, LNICST 338, pp. 238–255, 2020.

https://doi.org/10.1007/978-3-030-64002-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64002-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-64002-6_16

Characterizing Latency Performance in Private Blockchain Network 239

are divided into two categories: public and private. The former is known as a
“permissionless” network. Anyone can join and leave a public blockchain network
unrestrictedly. On the contrary, the latter is a “permissioned” network. Nodes
need to be permitted by an administrator to join a private blockchain network [5].

The open-source Ethereum [6] is one of the most popular blockchain plat-
forms. The public Ethereum network (Mainnet) is associated with the Ether
cryptocurrency (i.e., similar to the well-known Bitcoin [7]). On the other hand,
Ethereum allows users to deploy a private network with a self-configured genesis
file. Ethereum features smart contracts that are self-executed computer programs
without an external trusted authority. Ethereum executes the smart contracts in
the Ethereum Virtual Machine (EVM) [8], in which the operations are activated
by transactions. Once a node receives a new block, it verifies and runs functions
triggered by the transaction. The blockchain mechanism ensures the execution
outcomes are the same across nodes among a blockchain network.

The private Ethereum shows a substantial potential for the IoT system, which
includes a group of devices. The devices typically cooperate and share informa-
tion via wireless communication. In such a context, the smart contracts, which
are immutable and transparent, can allow sharing information among trustless
IoT nodes. Those characteristics significantly improve the IoT devices’ coopera-
tion [9]. Besides, the blockchain can extend the scalability of the IoT system with
the distribution of records. It hence avoids a single point failure due to decen-
tralized nature. One of the promising IoT applications for private Ethereum is
in smart-home scenarios [10,11], which allows home appliances to store, share or
modify states cooperatively. Therefore, it is crucial to understand the Ethereum
performance for those scenarios.

In this research, we characterize the latency of information propagation in a
private blockchain-based IoT scenario. We clarify latencies in two propagation
steps as the transaction-oriented and block-oriented latency while ignoring the
mining process time. We then investigate those latency values in a testbed. The
testbed includes a laptop and four Raspberry Pi 3b+ aiming to mimic a home-
based IoT application. The devices form a private Ethereum blockchain network
wherein there is a preloaded smart contract to read and write strings to the
blockchain. We measure the dissemination of writing-related transactions in a
baseline and a realistic scenario. The measurement results show that the latency
increases proportionally to the hop number in the realistic scenario. Besides,
the transaction-oriented latency is lower than the block-oriented latency when
the number of transactions is small. The opposite is observed when the number
of transactions is relatively large. The total latency (without the mining time)
indicates that the system spends averagely 63.92, 117.39, 172.38, and 229.21 ms
to propagate a single transaction effectively in one, two, three, four hops, respec-
tively.

The remainder of the paper is organized as follows. Section 2 presents related
works. In Sect. 3, we introduce the background and our methodology. Section 4
describes the experiment setting and evaluation results. Finally, Sect. 5 concludes
the paper and introduces the future works.

240 X. Chen et al.

2 Related Work

The current IoT is constructed on a central server model, in which all devices
have to connect to the server to ensure the authentication and communica-
tion [12]. The model may have issues, for example, when dealing with scala-
bility [13]. Thus, it is essential to transfer a centralized model to a decentral-
ized one [12]. The blockchain technology is attractive as one of the candidates
for decentralizing IoT systems. In [14], the author discusses the possibility of
blockchain to strengthen IoT. The work in [15] provides a comprehensive review
and analysis of blockchain solutions for the IoT systems. It also shows the poten-
tial of integrating blockchain and IoT to solve current IoT issues.

There have already been many interested in combining the blockchain and
IoT aiming to accelerate their adoption speeds [16]. In [3], the authors described
a survey of the state-of-the-art combinations between the technologies. The
blockchain enables a distributed peer-to-peer (P2P) network in which nodes
don’t need to trust other nodes through a trusted third party. This feature
means that the nodes can reach a reconciliation faster and potentially increases
the network scalability. Moreover, the utilization of smart contracts makes it pos-
sible for researchers and developers to fulfill the different demands of the IoT.
With smart contracts, IoT devices can run multi-step processes automatically
in a distributed method.

Up to date, there are many applications in which the blockchain has been
beneficial for IoT networks. In [17], the authors proposed to use Ethereum to
manage IoT devices. However, they only show proof of concept in a scenario
with a limited number of IoT devices. In [11], the authors presented an overview
of the private Ethereum blockchain-based smart home system (SHS). The SHS
is defined as an integration of home appliances and sensors, which obtain and
share information for each other. The presented SHS used a smart home miner
to manage the private blockchain, and several non-mining sensors to deliver
data to local storage. In [10], the authors presented a more realistic smart home
application with a private Ethereum blockchain, which composes of four major
components (i.e., temperature and humidity sensors, a smartphone-based visu-
alization application, a Raspberry Pi 3b, and a computer). The Raspberry with
sensors collects sensing data and calls a preloaded smart contract. The computer
was used to manage a private blockchain. In both systems, there is always a com-
puter to maintain the blockchain network. That is because IoT devices usually
don’t have enough capacity to conduct mining process nor store the full copy
of the blockchain. However, both works did not investigate the performance of
private blockchain. In [18,19], the authors introduce an architecture of a smart
home containing several local private blockchain networks, which communicate
with each other through an elected cluster header (CH). Each CH mines blocks
and implement access control for its local private blockchain network.

Recently, there is an evaluation framework for analyzing private blockchains
proposed in [20]. The authors divide a blockchain network into four layers. From
top to bottom, they are application layer, execution engine layer, data model
layer, and consensus layer. The authors use different workloads to evaluate

Characterizing Latency Performance in Private Blockchain Network 241

different layers of a private blockchain. They evaluated latency (“the response
time per transaction”) in the application layer on three main blockchain plat-
forms: Ethereum, Parity, and Hyperledger Fabric. In terms of latency, Parity
has the lowest latency, and Ethereum has the highest. In [21], which is an exten-
sion of [20], the authors implemented different workloads with varying numbers
of transactions to the application layer. They analyzed the performance of two
platforms: Ethereum and Hyperledger Fabric. In both papers, they considered
the response latency of transactions in a single node. In this work, we propose
two different latency types according to the lifecycle of transactions. Those two
latencies describe a full view of information propagation in a private blockchain
network.

3 Background and Methodology

3.1 Background

Ethereum blockchain is essentially a transaction-based state machine [8]. The
information of present state composes of account balances, data of smart con-
tracts, etc. Any nodes in the blockchain network can submit transactions to
modify the state machine. The submitted transaction on a node will broadcast
to all other nodes. Each node maintains a transaction pool (txpool) to keep all
pending transactions. A mining node will select some transactions from txpool
to form a block and reach a consensus with the PoW algorithm [22]. After that,
it will form and broadcast the block to other nodes. All other nodes need to
confirm the correctness of the hash value contained in the block header. If the
hash is validated, the block will be appended to the local blockchain database.
When the block modification has been done by most of the nodes, they will reach
a consensus for the state modification.

Geth [23] is the official implementation of Ethereum nodes. The nodes form
the Ethereum blockchain network following the P2P networking protocols named
DEVp2p [24]. Devp2p includes a node discovery protocol and a RLPx transport
protocol, which are based on UDP, TCP, respectively (as shown in Fig. 1).

Node Discovery Protocol. Geth implements its node discovery protocol
based on a Kademlia-like Distributed Hash Table (DHT) [25] for efficiently locat-
ing and storing content in a P2P network. In private Ethereum blockchain net-
work, nodes are expected to join the network manually by the administrator,
the node discovery protocol is used to routing peers.

Every node keep a 256-bit identity or “node ID” randomly generated from
Secp256k1 elliptic curve [26]. The logical distance between two nodes is defined
as the bitwise XOR of two nodes ID (a and b) as the following equation:

distance(a, b) = a ⊕ b (1)

Every node is also expected to maintain an Ethereum Node Records (ENR)
containing up-to-date information of itself, including node ID, IP address, TCP

242 X. Chen et al.

Fig. 1. Ethereum’s DEVp2p protocols

and UDP port, etc. Nodes keep information about other nodes in their “neigh-
borhood”. The information of neighbor nodes are stored in a routing table.
According to the integer value of the distance, Ethereum divides the routing
table to several ‘k-buckets.’ For each 0 ≤ i < 256, every node keeps a k-bucket
for nodes of distance between 2i and 2i+1 from itself. The current protocol uses
k = 16, which means every k-bucket contains up to 16 node entries. The node
entries are sorted in an update order – most recently updated at the tail and
least recently updated at the head.

The RLPx Transport Protocol. The RLPx transport protocol is a TCP-
based transport protocol used for communication among Ethereum nodes.
Recursive Length Prefix (RLP) [27] is a protocol to encode arbitrarily nested
arrays of binary data to serialize messages in Ethereum. Based on RLP, RLPx
enables nodes to transfer encrypted, serialized data.

In RLPx, two nodes need to perform a two-phase handshake to initialize the
session before transmitting essential messages. Figure 2 presents an overview of
two handshakes. The first handshake pertains to the exchange of public keys
that are used for the subsequent communication. The subsequent messages are
therefore encrypted and authenticated. The second handshake pertains to the
negotiation on the subsequent capabilities with a Hello message instantly after
the first handshake.

An RLPx connection is established by creating a TCP connection and agree-
ing on a pair of an ephemeral key for further encrypted and authenticated com-
munication. The process of creating a session keys between the ‘initiator’ (the
node which opened the TCP connection) and the ‘recipient’ (the node which
accepted it) is the first handshake. The initiator generates the ephemeral key
with a shared secret and sends an auth message containing the encrypted shared
secret to the recipient. The recipient decrypts and generates the same key with
the shared secret. Then it responds an auth − ack message to the initiator. All
messages following the first handshake are framed.

Characterizing Latency Performance in Private Blockchain Network 243

Fig. 2. Two handshakes in RLPx

After the ephemeral key is negotiated, both sides of the connection send a
Hello message or a Disconnect message, which is considered the second hand-
shake. The Disconnect message Inform the peer that a disconnection is immi-
nent. The sender can append a single byte of reason code in the message on
this disconnection. Alternatively, the Hello message exchanges their supporting
capabilities and the corresponding version. Two sides of nodes negotiate which
capability to use in the subsequent communication with Hello messages.

Ethereum Wire Protocol. Based on the RLPx protocol, Ethereum utilizes
different capabilities in different clients or conditions. The most widely used
subprotocol is the Ethereum Wire Protocol (ETH), which is used to exchange
blockchain information between “full” nodes. The Light Ethereum Subprotocol
(LES) is a protocol used by the “light” nodes, which only download block headers
and fetch other parts of the blockchain on demand. It provides full functionalities
of safely accessing the blockchain. Clients running LES do not mine blocks.
Therefore they do not take part in the consensus process. The Parity Light
Protocol (PIP) is a variation of LES for Parity Ethereum clients. We introduce
the ETH in detail.

The latest version of ETH is eth/64 at the time of writing. After the nodes
agree to use ETH, they need to exchange Status messages. The Status mes-
sage includes the Total Difficulty (TD) and the hash of their latest block. A
node, which has a lower TD after exchanging the Status messages, will start
synchronization immediately.

Transactions are propagated with one or more Transactions messages. Nodes
utilize the NewBlock, and NewBlockHashes messages to propagate a new
block. The NewBlock message includes the full block, which is sent to a small
set of connected nodes (the square root of the total number of peers). Other
peers are sent with a NewBlockHashes message, which contains the hash of

244 X. Chen et al.

Fig. 3. The private blockchain structure in both experiments

the new block. Those peers can request the block body with GetBlockBodies
message if they don’t receive it from other nodes after a period of time.

3.2 Methodology

In the scope of this research, we consider the IoT-based application of the private
Ethereum network. It is generally that some IoT devices may not have enough
capacity to conduct the mining process. However, the mining process is indeed
essential for the blockchain. Therefore, we come up with a scenario, as in Fig. 3,
where a powerful node serves as the mining one for several other nodes. The
nodes establish a blockchain network, which has a linear structure. In our work,
rather than using the node discovery protocol, we create the connections man-
ually. Node 1, which performs the mining tasks for the pending transactions,
generates blocks for the other nodes. Except for Node 1, the other nodes submit
transactions and wait for outcomes from the mining node. On creating a TCP
connection between two nodes, they exchange existent information in k-bucket
and initialize a blockchain connection on the ETH protocol. Transactions and
blocks are propagated along with the blockchain connection, hop by hop.

We can present a lifecycle of a transaction following the three steps, as shown
in Fig. 4. The lifecycle indicates the duration from the submitted moment to the
time of becoming effective. First, transactions are submitted to the txpool, and
then disseminated to the mining node. Second, the mining node executes the
PoW algorithm and generates blocks. Note that the transactions involved in the
mining process are packed into blocks. Third, the blocks are broadcasted and
validated to all nodes in the blockchain network.

After the validation, the transactions will finally be efficacious. In this work,
we intentionally ignore the period of the mining process and focus on the other
two others, namely the propagation of transactions and the propagation of
blocks. As indicated in Fig. 4, we define the leftmost process as transaction-
oriented latency and the rightmost one as block-oriented latency. The transac-
tions and blocks transmissions are triggered by Transactions and NewBlock
messages, respectively. They are followed by several steps implemented in Geth.
We analyze the Geth log at the highest verbosity to clarify the workflow of the
two processes in the private Ethereum network. The definitions are presented as
follows.

Characterizing Latency Performance in Private Blockchain Network 245

Fig. 4. Lifecycle of transactions in Ethereum blockchain network

Transaction-Oriented Latency. In Ethereum, the workflow of transmitting a
transaction between a node and its peer is shown in Fig. 5. After a transaction is
submitted to a node, it is pushed into a queue, waiting to be verified. When the
node finishes the verification (i.e., at the Promoted queued transaction point),
the transaction is submitted and added into the txpool (i.e., at the Submitted
transaction point). Afterward, the node broadcasts the new transaction to its
peer in Transactions message. The peer node first queues the received transac-
tion at the Pooled new future transaction point. It then verifies the transaction
after the Promoted queued transaction point. Subsequently, the transaction is
added to the txpool of this peer. This peer repeats the process to propagate
the transaction to the next peer. We define the transaction-oriented latency as
the interval between the submission moment in one node and the promotion
time in its peer. The transaction-oriented describes the time consumption for
a transaction to be propagated in different hops. With a lower value of the
transaction-oriented latency, a submitted transaction can reach the entire net-
work quicker.

Block-Oriented Latency. The mining node selects transactions from txpool
and packs them into a block, which is then propagated to its peer. Figure 6
shows the workflow of propagating a newly mined block, which begins at the
Mined potential block point. Nodes in the network use the NewBlock message
to send the full block to its peers at the Propagated block point. After the peer
receives the block, the block is pushed into a queue at the Queued propagated
block point. The peer imports the block at the Importing propagated block
point then starts to process it. To reach all the nodes as soon as possible, the
peer first passes the block to other nodes (i.e., at the Propagated block point).
At this moment, the peer has already started repeating the block transmission
process to the next peer. Then the peer verifies the block and inserts it in its
local database at Inserted block point. The block finished its lifecycle at the
Imported new chain segment point. The peer announces the ownership of the
block to avoid duplicating transmission. We define the interval from mined a
block to the import of the block in one of the peers as block-oriented latency.

246 X. Chen et al.

Fig. 5. The workflow of transmitting a new transaction in Geth

The block-oriented latency describes the time consumption for a block to
be propagated in different hops. A block contains several verified transactions.
After the block is propagated and appended to a peer, those transactions are
formally accepted and come into effect. Thus, this latency describes how fast a
block outstretches the network.

4 Evaluation

This section describes our evaluation of the two latencies. We first construct the
experiment environment with several specific preparations. We then conduct
experiments and report the results.

4.1 Experiment Setup

We build our testbed with a laptop computer and four IoT devices. Each IoT
device is a single-board Raspberry Pi 3b+ that could run tasks as normal com-
puters. The hardware configuration is shown in Table 1. Figure 7 shows the
physical deployment of the devices. The devices connect to the same TPlink
Wi-Fi router to build the underlying network. On top of the underlying net-
work, we set up the Ethereum blockchain network using the software setting
described in Table 2. We necessarily create a custom genesis file to launch the
blockchain client in private deployment. Moreover, in the genesis file, we need
to set a proper level of difficulty, which can ensure the data nodes receive
responses in a reasonable time. Another critical parameter is the block gas limit,

Characterizing Latency Performance in Private Blockchain Network 247

Fig. 6. The workflow of transmitting a new block in Geth

Fig. 7. Our deployment of the private block chain network (The lightning marks repre-
sent the underlying network connection, while the solid arrows represent the blockchain
connection.)

248 X. Chen et al.

Table 1. Hardware configuration

Raspberry Pi 3b+

Processor 4x Cortex-A53 1.4 GHz

Memory 1 GB

Storage 16 GB MicroSDHC

Thinkpad laptop

Processor 4x Corei5-7200U 2.5 GHz

Memory 8 GB and 2 GB Swap

Table 2. Software configuration

Thinkpad laptop Ubuntu 16.04 LTS Geth 1.9.10

Raspberry Pi 3b+ Ubuntu Mate 18.04 Geth 1.9.10

which allows the blocks contain sufficient transactions. Our private blockchain
network has a linear structure that indicates by the arrows in Fig. 7. In this
scenario, the laptop runs as a mining node, which has enough power to mine
continuously. On the other hand, the Raspberry Pi 3b+ serves as a data node,
which concentrates on information sharing. To run our experiments, we have to
prepare two important issues as follows.

First, we deploy a smart contract written in Solidity [28] version 0.4.25. The
smart contract, which simulates the reading and writing of information in the IoT
system, has two functions, namely writing a string to the blockchain and reading
the current string. Usually, Ethereum will charge the sender some Ether based
on gas consumption and the gas price of the transaction. However, the nodes in a
private network suppose to share information for free. In our private deployment,
the gas price is set to zero. That means the nodes can submit transactions to
write for free. Moreover, the reading function doesn’t consume any gas. Thus,
nodes can read the string from the smart contract without paying.

Second, we synchronize the system time on the nodes. We expect to measure
the latency on the accuracy level of a millisecond. Thus, we choose ntpdate to
synchronize the system time on all devices. The ntpdate command sets the local
system time by polling the NTP (Network Time Protocol) servers specified to
determine the correct time, which can adjust the time to microsecond accuracy.
There are many target server can be utilized. We selected the closest available
NTP pool server in Japan1 as the synchronization target to get the highly accu-
rate time. By running ntpdate jp.pool.ntp.org command several times, the time
error can be adjusted less than one millisecond.

In our measurements, we use the Web3.js library [29] on every data node
to send transactions. Those nodes call the writing function in a transaction. We
preload a JavaScript file to the mining node. The file enables the start of a mining

1 IP address: 133.243.238.243 or 133.243.238.163.

Characterizing Latency Performance in Private Blockchain Network 249

 0

 10

 20

 30

 40

 50

 60

 70

node1 node2 node3 node4 node5

La
te

nc
y

(m
s)

1 transaction

Fig. 8. Transaction-oriented latency in the baseline scenario

process after receiving a transaction. Moreover, it will stop mining after finish
process all transactions in the txpool. Since the data nodes send transactions
discontinuously in our scenario, this functionality can save computing power and
reduce the number of empty blocks.

The verbosity is set to five in all nodes. That allows the Geth output has
detailed information, including all steps (i.e., in Fig. 5 and Fig. 6) with a times-
tamp. We record those outputs from the console to a log file and collect them
together with the scp (secure copy) tool. We then process the timestamp of the
claimed steps for each type of latency using our self-written bash scripts. We cal-
culate the minimum, average, and maximum value of different types of latency
in each set of experiment.

4.2 Result

We first measure the so-called baseline scenario, which includes the transaction-
oriented latency of transmitting a single transaction, and the block-oriented
latency of transmitting an empty block. Then we add workloads to simulate
latency in a realistic scenario. In transaction-oriented latency, we set two work-
loads: sending 10 and 100 transactions per time. We send transactions in each
data node a hundred times for each workload. All transactions are sent without
waiting until the previous one verified, and they arrive at the mining node within
different hops. In block-oriented latency, we set three workloads: sending blocks
containing 1, 10, and 100 transactions. The mining node collects transactions
from data nodes and do the mining process. The latest block is propagated to
data nodes within different hops. We send blocks from the mining node a hun-
dred times for each workload. Because Geth will omit the verification process

250 X. Chen et al.

 0

 30

 60

 90

 120

 150

 180

node1 node2 node3 node4 node5

La
te

nc
y

(m
s)

empty block

Fig. 9. Block-oriented latency in the baseline scenario

 0

 100

 200

 300

 400

 500

 600

node1 node2 node3 node4 node5

La
te

nc
y

(m
s)

10 transactions
100 transactions

Fig. 10. Transaction-oriented latency in the realistic scenario

when receiving an empty block. We set the workload of transmitting blocks with
one transaction to observe the time consumption to start the verification process.

Baseline Scenario. The results in the baseline shows the latency of con-
veying a minimal amount of information in this private blockchain network.
For the transaction-oriented latency, we measure the time consumption for a

Characterizing Latency Performance in Private Blockchain Network 251

 0

 100

 200

 300

 400

 500

node1 node2 node3 node4 node5

La
te

nc
y

(m
s)

1 transactions
10 transactions

100 transactions

Fig. 11. Block-oriented latency in the realistic scenario

 0

 5000

 10000

 15000

 20000

 25000

 0 10 20 30 40 50 60 70 80 90 100

B
lo

ck
 s

iz
e

(B
yt

es
)

Number of contained transactions

Fig. 12. Relationship between the block size and the number of transactions inside the
block

transaction to be transferred from each data node to the mining node 100 times.
Figure 8 shows the minimum, average, and maximum value of the measurement.
The latency has a positive relationship with the number of hops. We notice
that the average value increases approximately nine milliseconds for each hop.
Since blockchain transfers messages via the network connection, we use Ping

252 X. Chen et al.

commands to assessed the RTT (Round Trip Time) between two devices 100
times. The average RTT is 5.047 ms (min: 2.33 ms, max: 21.3 ms), which means
averagely a transaction consumes 4 ms to be processed and 5 ms to be trans-
ferred to the next node. Moreover, we notice the error bar extends in node 4 and
node 5, especially the maximum value. It means the latency tend to diversify
and become more significant with more hop.

For the block-oriented latency, we measure the time consumption for an
empty block to be transferred from the mining node to each data node 100
times. We show the measurement results in Fig. 9. Again, the latency has a pos-
itive relationship with the number of hops. However, with no transaction, there
is no need for confirmation process. Hence, the latency reflects transmitting a
block header.

Realistic Scenario. The results in the realistic scenario show the latencies with
workloads. For the transaction-oriented latency, we measure the time consump-
tion of transmitting 10 and 100 transactions. Figure 10 shows the results of two
workloads. Comparing to the baseline, we can see that at each node, processing
more transactions spends more time. For each workload, the latency also has an
approximately linear increase along with the number of hops. Notice that when
we transfer ten times the transactions, the latency is not ten times the previous
one. It is because the blockchain receives transactions continuously. They don’t
wait until a transaction is verified to accept the next one. Moreover, the error
bar is bigger when the number of transactions is larger. The reason is related
to the RTT. The blockchain network transmits each transaction independently.
Therefore, there more transactions are sent, the more RTTs will be added to the
latency. The RTT value is affected by the network condition. Thus, the latency
is more diverse when transmitting more transactions.

For the block-oriented latency, we measure the time consumption of transmit-
ting a block with 1, 10, and 100 transactions. Figure 11 shows the results of the
latency in those three scenarios. Comparing to the baseline, we can observe that
at each node, transmitting a block with more transactions spends more time (the
relationship of block size and transaction is shown in Fig. 12). For each workload,
the latency value linearly increases following the number of hops. A block with
one transaction consumes approximately 50 ms more than an empty block. That
is the time for the client to start the verification process. Moreover, the latency
in the one transaction case is close to that in the 10 transactions scenario, which
means to verify a transaction is quicker than initialize the verification process.
Additionally, we can observe that, for the latency in 100 transaction-case. The
first hop from the mining node to the data node consumes averagely 148.32 ms.
Other nodes spend roughly 50 ms for each hop. It is because the first hop includes
the verification time in the mining node, while the others don’t. We also notice
that the transaction-oriented latency is lower than the block-oriented latency
when transmitting 1 or 10 transactions, while the block-oriented latency is more
significant than the transaction-oriented latency when transmitting 100 trans-
actions.

Characterizing Latency Performance in Private Blockchain Network 253

 0

 100

 200

 300

 400

 500

 600

 700

node1 node2 node3 node4 node5

La
te

nc
y

(m
s)

transaction-oriented latency with 1 transaction
block-oriented latency with 1 transaction

transaction-oriented latency with 10 transactions
block-oriented latency with 10 transactions

transaction-oriented latency with 100 transactions
block-oriented latency with 100 transactions

Fig. 13. The total latencies without mining time

Next, we consider the total latency (without the mining process) from sub-
mitting transactions to the transactions becomes effective. The total latency is
a sum of the transaction-oriented latency and the block-oriented latency. The
results are shown in Fig. 13, in which the private Ethereum blockchain consumes
averagely 63.92, 117.39, 172.38, and 229.21 ms to propagate one transaction for
one, two, three, four hops. Moreover, it also needs 350.83, 478.46, 579.44, and
678.27 ms to propagate 100 transactions for the same hop conditions. We can
observe that the transaction-oriented latency is larger than the block-oriented
latency when handling 100 transactions.

5 Conclusion and Future Work

The private blockchain network is the potential technology for many IoT applica-
tions; hence understanding the blockchain performance is essential. In this paper,
we aim to characterize the latency in a real deployment of the private Ethereum.
First, we have defined the two latency types (i.e., transaction-oriented and block-
oriented latency) and their measurement methodology. We have then measured
them in the baseline and realistic scenarios. The results give us an observation
of the latencies’ relationship. The transaction-oriented latency is lower than the
block-oriented latency in the 1 or 10 transaction scenario. While the transaction-
oriented latency becomes more significant than the block-oriented latency with
the number of transactions increases to 100. Besides, we have considered the total
latency, which integrates the two latencies without the consideration of mining
latency. The private Ethereum blockchain consumes averagely 63.92, 117.39,

254 X. Chen et al.

172.38, and 229.21 ms to spread one transaction for one, two, three, four hops,
respectively. In the same scenario, the maximum total latency is less than 700 ms.

In the future, we plan to measure the performance of blockchain networks
with a more complex structure and more nodes. We also plan to investigate the
proof-of-authority (PoA) [30] consensus protocol, which doesn’t require mining
blocks, for the private Ethereum.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number
19K20251, 20H04174. Additionally, Kien Nguyen is supported by the Leading Initiative
for Excellent Young Researchers (LEADER) program from MEXT, Japan.

References

1. Singh, S., Singh, N.: Blockchain: future of financial and cyber security. In: Pro-
ceedings of 2nd IEEE International Conference on Contemporary Computing and
Informatics (IC3I), pp. 463–467 (2016)

2. Z̄ıle, K., Strazdiņa, R.: Blockchain use cases and their feasibility. Appl. Comput.
Syst. 23(1), 12–20 (2018)

3. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet
of things. IEEE Access 4, 2292–2303 (2016)

4. Lin, I.C., Liao, T.C.: A survey of blockchain security issues and challenges. IJ
Netw. Secur. 19(5), 653–659 (2017)

5. Wüst, K., Gervais, A.: Do you need a blockchain? In: Proceedings of IEEE Crypto
Valley Conference on Blockchain Technology (CVCBT), pp. 45–54 (2018)

6. Ethereum. https://ethereum.org/. Accessed 10 Mar 2020
7. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In:

Proceedings of IEEE P2P 2013, pp. 1–10 (2013)
8. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.

Ethereum Project Yellow Paper 151(2014), 1–32 (2014)
9. Xu, Q., Jin, C., Rasid, M.F.B.M., Veeravalli, B., Aung, K.M.M.: Blockchain-based

decentralized content trust for docker images. Multimedia Tools Appl. 77(14),
18223–18248 (2018)

10. Xu, Q., He, Z., Li, Z., Xiao, M.: Building an ethereum-based decentralized smart
home system. In: Proceedings of IEEE 24th International Conference on Parallel
and Distributed Systems (ICPADS), pp. 1004–1009 (2018)

11. Aung, Y.N., Tantidham, T.: Review of ethereum: smart home case study. In: Pro-
ceedings 2nd IEEE International Conference on Information Technology (INCIT),
pp. 1–4 (2017)

12. Atlam, H.F., Alenezi, A., Alassafi, M.O., Wills, G.: Blockchain with internet of
things: benefits, challenges, and future directions. Int. J. Intell. Syst. Appl. 10(6),
40–48 (2018)

13. Beck, R., Stenum Czepluch, J., Lollike, N., Malone, S.: Blockchain-the gateway to
trust-free cryptographic transactions (2016)

14. Kshetri, N.: Can blockchain strengthen the internet of things? IT Prof. 19(4),
68–72 (2017)

15. Lo, S.K., Liu, Y., Chia, S.Y., Xu, X., Lu, Q., Zhu, L., Ning, H.: Analysis of
blockchain solutions for IoT: a systematic literature review. IEEE Access 7, 58822–
58835 (2019)

https://ethereum.org/

Characterizing Latency Performance in Private Blockchain Network 255

16. Rathore, H., Mohamed, A., Guizani, M.: A survey of blockchain enabled cyber-
physical systems. Sensors 20(1), 282 (2020)

17. Huh, S., Cho, S., Kim, S.: Managing IoT devices using blockchain platform. In:
Proceedings of IEEE 19th International Conference on Advanced Communication
Technology (ICACT), pp. 464–467 (2017)

18. Dorri, A., Kanhere, S.S., Jurdak, R.: Blockchain in internet of things: challenges
and solutions. arXiv preprint arXiv:1608.05187 (2016)

19. Dorri, A., Kanhere, S.S., Jurdak, R., Gauravaram, P.: Blockchain for IoT secu-
rity and privacy: the case study of a smart home. In: 2017 IEEE International
Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops), pp. 618–623. IEEE (2017)

20. Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.L.: Blockbench: a
framework for analyzing private blockchains. In: Proceedings of ACM International
Conference on Management of Data, pp. 1085–1100 (2017)

21. Pongnumkul, S., Siripanpornchana, C., Thajchayapong, S.: Performance analysis
of private blockchain platforms in varying workloads. In: Proceedings of 26th IEEE
International Conference on Computer Communication and Networks (ICCCN),
pp. 1–6 (2017)

22. Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: An overview of blockchain tech-
nology: architecture, consensus, and future trends. In: Proceedings of IEEE Inter-
national Congress on Big Data (BigData Congress), pp. 557–564 (2017)

23. Go Ethereum (2013). https://geth.ethereum.org/. Accessed 12 Apr 2020
24. Devp2p (2020). https://github.com/ethereum/devp2p. Accessed: 13 Apr 2020
25. Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system based

on the XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45748-8 5

26. Secp256k1. https://en.bitcoin.it/wiki/Secp256k1. Accessed 09 Apr 2020
27. RLP. https://github.com/ethereum/wiki/wiki/RLP. Accessed 11 Apr 2020
28. Solidity (2020). https://github.com/ethereum/solidity. Accessed 13 Apr 2020
29. Web3.js (2020). https://github.com/ethereum/web3.js/. Accessed 11 Apr 2020
30. Clique Poa Protocol (2020). https://github.com/ethereum/EIPs/issues/225.

Accessed 11 Apr 2020

http://arxiv.org/abs/1608.05187
https://geth.ethereum.org/
https://github.com/ethereum/devp2p
https://doi.org/10.1007/3-540-45748-8_5
https://doi.org/10.1007/3-540-45748-8_5
https://en.bitcoin.it/wiki/Secp256k1
https://github.com/ethereum/wiki/wiki/RLP
https://github.com/ethereum/solidity
https://github.com/ethereum/web3.js/
https://github.com/ethereum/EIPs/issues/225

	Characterizing Latency Performance in Private Blockchain Network
	1 Introduction
	2 Related Work
	3 Background and Methodology
	3.1 Background
	3.2 Methodology

	4 Evaluation
	4.1 Experiment Setup
	4.2 Result

	5 Conclusion and Future Work
	References

