
https://doi.org/10.1007/s12083-021-01148-9

An experimental study on performance of private blockchain
in IoT applications

Xuan Chen1 · Kien Nguyen1 ·Hiroo Sekiya1

Received: 6 December 2020 / Accepted: 31 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Blockchain includes distributed records that are immutable and transparent through replicating among public or private
networks. The open-source Ethereum is one of the emerging blockchain platforms featuring smart contracts. The private
Ethereum has been obtaining interest due to its applicability in various applications, including the Internet of Things (IoT).
Hence, understanding and quantifying blockchain performance is crucial to facilitate the blockchain application. In this
paper, assuming IoT scenarios, we conduct an experimental study to investigate various performance parameters of private
Ethereum networks. Initially, we clarify the latency processes according to the transaction lifecycle (i.e., transaction-oriented
and block-oriented latency) and measure them in different deployments. Then, we track and report the performance of
blockchain nodes during the processes of utilizing transaction. Our deployment networks include an indoor IoT blockchain
network (i.e., with a laptop and several Raspberry Pi 3b+ (RPI 3b+)) and a private blockchain over the cloud. In both cases,
we write and deploy a smart contract to read and write data to the blockchain and measure the performance in various
scenarios. The experiment results reveal not only the blockchain node’s performance but also the latencies-hop correlation,
as well as the latencies’ relation in different workloads. Notably, the latency values in the cloud deployment latency strongly
depend on Round Trip Time (RTT) between the blockchain nodes.

Keywords Private blockchain · Ethereum · IoT · Performance · Latency

1 Introduction

Blockchain technology has been gaining popularity with
various applications, such as finance [18], healthcare [28],
and the Internet of Things (IoT) [29]. A blockchain network
is a distributed ledger, which can be replicated and shared
among its nodes. Blockchain networks are transparent

This article is part of the Topical Collection: Special Issue on
Blockchain for Peer-to-Peer Computing
Guest Editors: Keping Yu, Chunming Rong, Yang Cao,
and Wenjuan Li

� Kien Nguyen
nguyen@chiba-u.jp

Xuan Chen
chenxuan@chiba-u.jp

Hiroo Sekiya
sekiya@faculty.chiba-u.jp

1 Graduate School of Science and Engineering,
Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi,
Chiba, Japan

because any node can view all historical records. The
records are immutable because they are reserved eternally
under 51% rule [3]. Thus, we can build a network that
allows nodes to share information without pre-trusting
each other using blockchain. All information submitted
to a blockchain is moduled in transaction format. The
mining nodes, which maintain a full copy of the historical
transactions and blocks, can generate new blocks by
verifying new transactions with the proof-of-work (PoW)
consensus protocol. The blockchain networks are divided
into two categories: public and private. The former is
known as a “permissionless” network, to which anyone can
join and leave unrestrictedly. On the contrary, the latter
is a “permissioned” network, where the nodes need to be
permitted by an administrator to join the network [27].

The open-source Ethereum is one of the most popular
blockchain platforms [11]. On the one hand, the public
Ethereum network (i.e., the Mainnet) is associated with
the Ether cryptocurrency (i.e., similar to the well-
known Bitcoin [7]). On the other hand, Ethereum allows
users to deploy a private block network with a self-
configured genesis file. Ethereum has smart contracts that

/ Published online: 12 May 2021

Peer-to-Peer Networking and Applications (2021) 14:3075–3091

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-021-01148-9&domain=pdf
http://orcid.org/0000-0003-0400-3084
mailto: nguyen@chiba-u.jp
mailto: chenxuan@chiba-u.jp
mailto: sekiya@faculty.chiba-u.jp


are automatically executed computer programs without
external trusted authority. The execution of smart contracts
is in the Ethereum Virtual Machine (EVM), in which
transactions activate the operations. Once a node receives
a new block, it verifies and runs functions triggered by the
inside transactions. The blockchain mechanism ensures the
execution outcomes are the same across nodes among a
blockchain network.

The private Ethereum shows a substantial potential
for the IoT system, which includes a group of devices.
The devices typically cooperate and share information
via wireless communication. In such a context, the smart
contracts, which are immutable and transparent, can allow
the sharing of information among trustless IoT nodes.
Those characteristics significantly improve the IoT devices’
cooperation [22]. Besides, the blockchain can extend the
scalability of the IoT system with the distribution of records.
It hence avoids a single point failure that is caused by the
decentralized nature. One of the promising IoT applications
for private Ethereum is in smart-home scenarios [20, 23],
which allows home appliances to store, share or modify
states cooperatively. Moreover, in some IoT applications,
the devices from different geographical locations may need
to cooperate over the Internet (via various cloud computing
infrastructures) [25]. Therefore, it is crucial to understand
the Ethereum performance for those scenarios.

This research introduces a new method to investigate the
private Ethereum blockchain’s performance by experimen-
tal study. This research’s uniqueness first includes clarifi-
cation of two propagation steps, which are the transaction-
oriented and block-oriented latencies, in an indoor testbed
and an Ethereum deployment over Google Cloud Plat-
form (GCP). Moreover, we introduce a set of lightweight
monitoring tools, which effectively gather the performance
parameters of devices running the blockchain node in the
two deployments. More specifically, the testbed includes
a laptop and four Raspberry Pi 3b+ aiming to mimic a
home-based IoT application. In the case of GCP deploy-
ment, we deploy three virtual machine instances distributed
on different continents. In each case, the network nodes
form a private Ethereum blockchain network wherein there
is a preloaded smart contract to read and write strings to
the blockchain. We measure the dissemination of writing-
related transactions in a baseline and a realistic scenario
following the new latency definition. Simultaneously, we
use the monitoring tool to collect the blockchain node’s
performance metrics such as CPU, disk usage, memory
usage, and network throughput. The delay measurement
results show that the latency increases proportionally to
the hop number in the indoor testbed’s realistic scenario.
Besides, the transaction-oriented latency is lower than the
block-oriented latency when the number of transactions is

small. The opposite is observed when the number of trans-
actions is relatively large. The total latency (without the
mining time) indicates that the system spends an average of
63.92, 117.39, 172.38, and 229.21 milliseconds to propa-
gate a single transaction effectively in one, two, three, four
hops, respectively. In GCP, we observe the single-hop trans-
mission over long-distance on the private blockchain. The
measurement results are highly associated with the Round
Trip Time (RTT). In all experiments, our monitoring tool
well captures the performance metrics.

The remainder of the paper is organized as follows.
Section 2 presents related works. In Section 3, we
introduce the background of information propagation
protocols in Ethereum network. In Section 4, we present
our methodologies of two procedures of latency and the
constitution of the monitoring pattern in this work. Section 5
describes the experiment setting and evaluation results.
Finally, Section 6 concludes the paper.

2 Related work

The current IoT is constructed on a central server model, in
which all devices have to connect to the server to ensure the
authentication and communication [5]. The model may have
issues, for example, when dealing with scalability. Thus, it
is essential to transfer a centralized model to a decentralized
one [5]. The blockchain technology is attractive as one of
the candidates for decentralizing IoT systems. In [15], the
author discusses the possibility of blockchain to strengthen
IoT. The work in [16] provides a comprehensive review and
analysis of blockchain solutions for the IoT systems. It also
shows the potential of integrating blockchain and IoT to
solve current IoT issues.

There have already been many interested in combining
the blockchain and IoT aiming to accelerate their adoption
speeds [13]. In [14], the authors described a survey of
the state-of-the-art combinations between the technologies.
The blockchain enables a distributed peer-to-peer (P2P)
network in which nodes don’t need to trust other nodes
through a trusted third party. This feature means that the
nodes can reach a reconciliation faster and potentially
increases the network scalability. Moreover, the utilization
of smart contracts makes it possible for researchers and
developers to fulfill the different demands of the IoT. With
smart contracts, IoT devices can run multi-step processes
automatically in a distributed method.

Up to date, there are many applications in which the
blockchain has been beneficial for IoT networks. In [24], the
authors proposed to use Ethereum to manage IoT devices.
However, they only show proof of concept in a scenario
with a limited number of IoT devices. In [20], the authors

3076 Peer-to-Peer Netw. Appl. (2021) 14:3075–3091



presented an overview of the private Ethereum blockchain-
based smart home system (SHS). The SHS is defined
as an integration of home appliances and sensors, which
obtain and share information for each other. The presented
SHS used a smart home miner to manage the private
blockchain, and several non-mining sensors to deliver data
to local storage. In [23], the authors presented a more
realistic smart home application with a private Ethereum
blockchain, which composes of four major components
(i.e., temperature and humidity sensors, a smartphone-based
visualization application, a RPI 3b, and a computer). The
RPI with sensors collects sensing data and calls a preloaded
smart contract. The computer was used to manage a private
blockchain. In both systems, there is always a computer
to maintain the blockchain network. That is because IoT
devices usually don’t have enough capacity to conduct
mining process nor store the full copy of the blockchain.
However, both works did not investigate the performance of
private blockchain. In [1] and [2], the authors introduce an
architecture of a smart home containing several local private
blockchain networks, which communicate with each other
through an elected cluster header (CH). Each CH mines
blocks and implement access control for its local private
blockchain network.

The latency and performance of blockchain platform
have been one of their most concerned shortcomings [21].
The work in [4] introduces an evaluation framework for
analyzing private blockchain performance, which divides
the blockchain into a four-layer modulo. The performance
is evaluated on each layer. [26] inherites [4]’s evaluation,
extends it with variations workloads. However, both the
works interpret the latency with the adoption of a single
node when the long-distance distributed nodes require a
significant time to propagate data. Many studies have
evidenced the performance of IoT nodes. [6] characterize
latency in the private Ethereum network in three transaction
life processes, which do not consider the distance among
different nodes. [30] propose a log-based real-time
framework to monitor Ethereum. In comparison, we have
more intuitive parameters.

Regarding latency in the blockchain network, there are
many interpretations of the definition according to different
scenarios. For a traditional payment blockchain system [7],
a transaction may need several blocks to be accepted to
the main chain depending on the attached transaction fee,
where the speed of generating blocks is essential. Latency
is explained as the mining time. In several papers, latency is
explained as the time between submitting a transaction and
the first confirmation of acceptance [17]. Because after the
first confirmation, the transaction becomes more convinced
to gain widespread adoption. While, for our distributed
IoT system, the network transmission latency can’t be
ignored. Both the first confirmation and authorized block

propagation are achieved on the long-distance transmission.
Unlike others, in [6], we initially present a method of
characterizing the latency of information propagation in the
private Ethereum blockchain. This paper extends the work
to include the IoT and the deployment on the Google cloud
platform. Moreover, we newly add the monitoring tools and
monitoring results.

3 Background

Ethereum blockchain is essentially a transaction-based state
machine [11]. The information of present state composes of
account balances, data of smart contracts, etc. Any nodes in
the blockchain network can submit transactions to modify
the state machine. The submitted transaction on a node
will broadcast to all other nodes. Each node maintains a
transaction pool (txpool) to keep all pending transactions.
A mining node will select some transactions from txpool to
form a block and reach a consensus with the PoW algorithm
[31]. After that, it will form and broadcast the block to other
nodes. All other nodes need to confirm the correctness of
the hash value contained in the block header. If the hash is
validated, the block will be appended to the local blockchain
database. When the block modification has been done by
most of the nodes, they will reach a consensus for the state
modification. Geth [9] is the official implementation of
Ethereum nodes. The nodes form the Ethereum blockchain
network following the P2P networking protocols named
DEVp2p [8]. Devp2p includes a node discovery protocol
and a RLPx transport protocol, which are based on UDP,
TCP, respectively (as shown in Fig. 1a).

3.0.1 Node discovery protocol

Geth implements its node discovery protocol based on
a Kademlia-like Distributed Hash Table (DHT) [19] for
efficiently locating and storing content in a P2P network. In
private Ethereum blockchain network, nodes are expected
to join the network manually by the administrator, the node
discovery protocol is used to routing peers. Every node keep
a 256-bit identity or “node ID” randomly generated from
Secp256k1 elliptic curve. The logical distance between two
nodes is defined as the bitwise XOR of two nodes ID (a and
b) as the following equation:

distance(a, b) = a ⊕ b (1)

Every node is also expected to maintain an Ethereum
Node Records (ENR) containing up-to-date information of
itself, including node ID, IP address, TCP and UDP port,
etc. Nodes keep information about other nodes in their
“neighborhood”. The information of neighbor nodes are
stored in a routing table. According to the integer value of

3077Peer-to-Peer Netw. Appl. (2021) 14:3075–3091



Fig. 1 Transmission protocols
in Ethereum network

the distance, Ethereum divides the routing table to several
‘k-buckets.’ For each 0 ≤ i < 256, every node keeps a k-
bucket for nodes of distance between 2i and 2i+1 from itself.
The current protocol uses k = 16, which means every k-
bucket contains up to 16 node entries. The node entries are
sorted in an update order —most recently updated at the tail
and least recently updated at the head.

3.0.2 The RLPx transport protocol

The RLPx transport protocol is a TCP-based transport
protocol used for communication among Ethereum nodes.
Recursive Length Prefix (RLP) is a protocol to encode
arbitrarily nested arrays of binary data to serialize messages
in Ethereum. Based on RLP, RLPx enables nodes to transfer
encrypted, serialized data.

In RLPx, two nodes need to perform a two-phase
handshake to initialize the session before transmitting
essential messages. Figure 1b presents an overview of two
handshakes. The first handshake pertains to the exchange of
public keys that are used for the subsequent communication.
The subsequent messages are therefore encrypted and
authenticated. The second handshake pertains to the
negotiation on the subsequent capabilities with a Hello

message instantly after the first handshake. An RLPx
connection is established by creating a TCP connection
and agreeing on a pair of an ephemeral key for further
encrypted and authenticated communication. The process
of creating a session keys between the ‘initiator’ (the node
which opened the TCP connection) and the ‘recipient’ (the
node which accepted it) is the first handshake. The initiator
generates the ephemeral key with a shared secret and sends
an auth message containing the encrypted shared secret to
the recipient. The recipient decrypts and generates the same
key with the shared secret. Then it responds an auth − ack

message to the initiator. All messages following the first
handshake are framed.

After the ephemeral key is negotiated, both sides of
the connection send a Hello message or a Disconnect

message, which is considered the second handshake. The
Disconnect message Inform the peer that a disconnection
is imminent. The sender can append a single byte of reason
code in the message on this disconnection. Alternatively,
the Hello message exchanges their supporting capabilities
and the corresponding version. Two sides of nodes negotiate
which capability to use in the subsequent communication
with Hello messages.

3.0.3 Ethereumwire protocol

Based on the RLPx protocol, Ethereum utilizes different
capabilities in different clients or conditions. The most
widely used subprotocol is the Ethereum Wire Protocol
(ETH), which is used to exchange blockchain information
between “full” nodes. The Light Ethereum Subprotocol
(LES) is a protocol used by the “light” nodes, which
only download block headers and fetch other parts of the
blockchain on demand. It provides full functionalities of
safely accessing the blockchain. Clients running LES do
not mine blocks. Therefore they do not take part in the
consensus process. The Parity Light Protocol (PIP) is a
variation of LES for Parity Ethereum clients. We use the
ETH version eth/64 in this work. After the nodes agree
to use ETH, they need to exchange Status messages.
The Status message includes the Total Difficulty (TD)
and the hash of their latest block. A node, which has a
lower TD after exchanging the Status messages, will start
synchronization immediately.

Transactions are propagated with one or more
T ransactions messages. Nodes utilize the NewBlock,
and NewBlockHashes messages to propagate a new
block. The NewBlock message includes the full block,
which is sent to a small set of connected nodes (the square
root of the total number of peers). Other peers are sent with
a NewBlockHashes message, which contains the hash of
the new block. Those peers can request the block body with
GetBlockBodies message if they don’t receive it from
other nodes after a period of time.

3078 Peer-to-Peer Netw. Appl. (2021) 14:3075–3091



4Methodology

4.1 Latency characterization

In the scope of this research, we consider the IoT-based
application of the private Ethereum network. It is generally
that some IoT devices may not have enough capacity to
conduct the mining process. However, the mining process is
indeed essential for the blockchain. Therefore, we come up
with a scenario, as in Fig. 2, where a powerful node serves as
the mining one for several other nodes. The nodes establish
a blockchain network, which has a linear structure. In our
work, rather than using the node discovery protocol, we
create the connections manually. Node 1, which performs
the mining tasks for the pending transactions, generates
blocks for the other nodes. Except for Node 1, the other
nodes submit transactions and wait for outcomes from the
mining node. On creating a TCP connection between two
nodes, they exchange existent information in k-bucket and
initialize a blockchain connection on the ETH protocol.
Transactions and blocks are propagated along with the
blockchain connection, hop by hop.

We can present a lifecycle of a transaction following
the three steps, as shown in Fig. 3. The lifecycle indicates
the duration from the submitted moment to the time of
becoming effective. First, transactions are submitted to
the txpool, and then disseminated to the mining node.
Second, the mining node executes the PoW algorithm and
generates blocks. Note that the transactions involved in the
mining process are packed into blocks. Third, the blocks
are broadcasted and validated to all nodes in the blockchain
network.

After the validation, the transactions will finally be
efficacious. In this work, we intentionally ignore the
period of the mining process and focus on the other two
others, namely the propagation of transactions and the
propagation of blocks. As indicated in Fig. 3, we define
the leftmost process as transaction-oriented latency and the
rightmost one as block-oriented latency. The transactions
and blocks transmissions are triggered by T ransactions

and NewBlock messages, respectively. They are followed
by several steps implemented in Geth. We analyze the Geth
log at the highest verbosity to clarify the workflow of

the two processes in the private Ethereum network. The
definitions are presented as follows.

4.1.1 Transaction-oriented latency

In Ethereum, the workflow of transmitting a transaction
between a node and its peer is shown in Fig. 4. After
a transaction is submitted to a node, it is pushed into a
queue, waiting to be verified. When the node finishes the
verification (i.e., at the Promoted queued transaction

point), the transaction is submitted and added into the txpool
(i.e., at the Submitted transaction point). Afterward,
the node broadcasts the new transaction to its peer
in T ransactions message. The peer node first queues
the received transaction at the Pooled new f uture

transaction point. It then verifies the transaction after
the Promoted queued transaction point. Subsequently,
the transaction is added to the txpool of this peer. This
peer repeats the process to propagate the transaction to
the next peer. We define the transaction-oriented latency
as the interval between the submission moment in one
node and the promotion time in its peer. The transaction-
oriented describes the time consumption for a transaction
to be propagated in different hops. With a lower value of
the transaction-oriented latency, a submitted transaction can
reach the entire network quicker.

4.1.2 Block-oriented latency

The mining node selects transactions from txpool and packs
them into a block, which is then propagated to its peer.
Figure 5 shows the workflow of propagating a newly mined
block, which begins at the Mined potential block point.
Nodes in the network use the NewBlock message to send
the full block to its peers at the Propagated block point.
After the peer receives the block, the block is pushed into
a queue at the Queued propagated block point. The peer
imports the block at the Importing propagated block

point then starts to process it. To reach all the nodes as soon
as possible, the peer first passes the block to other nodes
(i.e., at the Propagated block point). At this moment, the
peer has already started repeating the block transmission
process to the next peer. Then the peer verifies the block

Fig. 2 The private blockchain
structure in this work

3079Peer-to-Peer Netw. Appl. (2021) 14:3075–3091



Fig. 3 Lifecycle of transactions in Ethereum blockchain network

and inserts it in its local database at Inserted block point.
The block finished its lifecycle at the Imported new chain

segment point. The peer announces the ownership of the
block to avoid duplicating transmission. We define the
interval from mined a block to the import of the block
in one of the peers as block-oriented latency. The block-
oriented latency describes the time consumption for a block
to be propagated in different hops. A block contains several
verified transactions. After the block is propagated and
appended to a peer, those transactions are formally accepted
and come into effect. Thus, this latency describes how fast
a block outstretches the network.

4.2 Monitoring tools

We aim to monitor the performance parameters of the
devices running Ethereum implementation. Since the
monitoring method is expectedly lightweight, therefore we
exploit the Linux internal commands to get the performance
values. In the following, we introduce the performance
metrics as well as the associated tools.

Disk space usage: Ethereum full nodes have to keep
the entire historical transactions, blocks, and smart contract
codes to locally regenerate the state tire. That historical
information is permanently retained. Thus, Ethereum kept
them in a key-value LevelDB1 to disk space. Hence it is
worthy of investigating the disk usage. We use the Linux
tool named df2 to get the values of disk space usage.

Memory usage: Ethereum executes transactions and
changes the state tire in a specialized EVM,3 which is kept
in the memory space, along with pending transactions and
other ephemeral data. Therefore, the memory space relates
to the capacity of achieving blockchain functionalities.
Moreover, the execution of the JavaScript library also

1https://github.com/ethereum/leveldb
2https://linux.die.net/man/1/df
3https://ethereum.org/en/developers/docs/evm/

requires disk space and memory space for caching. The
memory usage value can be obtained with the free4 tool.

CPU utilization: It has been generally known that the exe-
cution of the PoW algorithm needs much more computa-
tional power. While the verification of transactions and blocks
also requires calculating hash functions. Therefore, besides
the miner, we also monitor the non-mining Ethereum nodes
over the CPU utilization. We use a bash script to capture the
CPU time statistics from the /proc/stat file two times
and then calculate the immediate CPU usage.

Network throughput : Ethereum nodes communicate
with each other continuously to exchange states, propagate
transactions and blocks through its underlying network. There-
fore, network throughput plays an important role in under-
standing the whole blockchain performance. We log and
read the accumulated bytes of data transmitted and received
from the /proc/net/dev file from the Linux system.

The above commands are composed to a file as the
monitoring pattern shown in Fig. 6. It is integrated with
the cron daemon on each device (i.e., in crontab), a time-
based Linux build-in scheduler utility, which can execute
the monitoring pattern periodically (i.e., every minute). This
monitoring pattern has a negligible impact on the running
blockchain system comparing with the remote procedure
call (RPC) based way as discussed later. Additionally,
the script can be extended with other parameters such as
I/O speed, load average, and CPU temperature for further
information.

5 Evaluation

5.1 Blockchain network environments

First, we build an indoor testbed with a laptop computer
and four IoT devices. Each IoT device is a single-board RPI
3b+ that could run tasks as normal computers. The hardware

4https://linux.die.net/man/1/free

3080 Peer-to-Peer Netw. Appl. (2021) 14:3075–3091

https://github.com/ethereum/leveldb
https://linux.die.net/man/1/df
https://ethereum.org/en/developers/docs/evm/
https://linux.die.net/man/1/free


Fig. 4 The workflow of
transmitting a new transaction in
Geth

and software configurations of the local blockchain nodes
are shown in Table 1. Figure 7b shows the physical
deployment of the devices. The devices connect to the same
TPlink Wi-Fi router to build the underlying network. On
top of the underlying network, we set up the Ethereum
blockchain network. We necessarily create a custom genesis
file to launch the blockchain client in private deployment.
Moreover, in the genesis file, we need to set a proper level
of diff iculty, which can ensure the data nodes receive
responses in a reasonable time. Another critical parameter
is the block gas limit, which allows the blocks contain
sufficient transactions. Our private blockchain network has
a linear structure that indicates by the arrows in Fig. 7a.
In this scenario, the laptop runs as a mining node, which

has enough power to mine continuously. On the other hand,
the RPI 3b+ serves as a data node, which concentrates on
information sharing.

Second, we construct a private Ethereum network on the
cloud. As illustrated in Fig. 8c, we select GCP and create
three distributed virtual machine (VM) instances. The nodes
have different locations, as shown in Fig. 8a. We allocate
those nodes with light computational resources to simulate
the IoT devices. The configuration of the nodes and their
operating systems are in Table 2. In this case, the underlying
network of private Ethereum is the Internet. We use the
same genesis file as the indoor testbed and form the private
blockchain network over the cloud as in Fig. 8b. In this case,
the underlying network of private Ethereum is the Internet.

Fig. 5 The workflow of
transmitting a new block in Geth

3081Peer-to-Peer Netw. Appl. (2021) 14:3075–3091



Fig. 6 Screenshot of monitoring
pattern

Node 1 and 2 serve as data nodes, while node 3 in the middle
serves as the mining node. We use a PC (i.e., local host) with
SSH connections to the nodes to control them and collect
results.

To run both experiments properly, we have to prepare
three important issues as follows.

1) Deploy a smart contract written in Solidity version
0.4.25. The smart contract, which executes the interaction
functionalities of reading and writing information from the
blockchain. Usually, Ethereum performs a charging module
from the sender based on gas consumption and the current
gas price. However, the nodes in a private network suppose
to share information without any actual charge. In our
private deployment, the gas price is set to zero to eliminate
the cryptocurrency cost.

2) Synchronize the system time on all nodes. We expect
to measure the latency on an accuracy level of milliseconds.
Thus, we choose ntpdate to synchronize the system time
on all devices. The ntpdate command sets the local system
time by polling the NTP (Network Time Protocol) servers
specified to determine the correct time, adjusting the time
to microsecond accuracy. We selected a static NTP pool
server5 as the synchronization target to get the highly
accurate time.

3) Install the Web3.js library [10] on every data
node to generate transactions calling the pre-loaded smart
contract automatically. Web3.js is a collection of JavaScript
libraries, which provides a complete Ethereum JSON-RPC
implementation to interact with a local or remote Ethereum
node via HTTP, IPC, or WebSocket. We open an IPC port
for each data node and send transactions every fixed period.
Also, there are other libraries available, such as Web3.py6

or Web3J7

We record the output of the Geth clients with the highest
verbosity, which allows Geth produce the most detailed
information, including all steps (i.e., in Figs. 4 and 5) with
a timestamp. Eventually, we collect the log files together

5IP address: 133.243.238.243
6https://web3py.readthedocs.io/en/stable/
7https://docs.web3j.io/

with the scp (secure copy) tool and extract the timestamp
of the claimed steps for each type of latency using our self-
written bash scripts. We calculate the minimum, average,
and maximum values of different types of latency in each
set of experiments.

5.2 Evaluation in indoor testbed

The latency is evaluated in two scenarios, namely, baseline
scenario and realistic scenario. The former scenario includes
the transaction-oriented latency of transmitting a single
transaction, and the block-oriented latency of transmitting
an empty block since Geth will omit the verification process
on receiving an empty block. The latter scenario is equipped
with additional workloads. For transaction-oriented latency,
we set two workloads: sending 10 and 100 transactions per
time. For block-oriented latency, we set three workloads:
sending blocks containing 1, 10, and 100 transactions.

5.2.1 Baseline scenario

The results in the baseline shows the latency of conveying
a minimal amount of information in this local private
blockchain network. For the transaction-oriented latency,
we measure the time consumption for a transaction to be
transferred from each data node to the mining node 100

Table 1 Configuration of the local nodes

RPI 3b+

Processor 4x Cortex-A53 1.4 GHz

Memory 1 GB

Storage 16 GB MicroSDHC

OS Ubuntu 18.04 LTS

Geth version Geth 1.9.10-stable

Thinkpad laptop

Processor 4x Corei5-7200U 2.5GHz

Memory 8 GB and 2 GB Swap

OS Ubuntu 18.04 LTS

Geth version Geth 1.9.10-stable

3082 Peer-to-Peer Netw. Appl. (2021) 14:3075–3091

https://web3py.readthedocs.io/en/stable/
https://docs.web3j.io/


Fig. 7 Deployment of the
private blockchain in the indoor
testbed

(a)

(b)

times. Figure 9 shows the minimum, average, and maximum
value of the measurement. The latency has a positive
relationship with the number of hops. We notice that the
average value increases approximately nine milliseconds
for each hop. Since blockchain transfers messages via the
network connection, we use P ing commands to assessed
the RTT values between two devices 100 times. The average
RTT is 5.047 milliseconds (min: 2.33 ms, max: 21.3 ms),
which means averagely a transaction consumes 4 ms to
be processed and 5 ms to be transferred to the next node.
Moreover, we notice the error bar extends in node 4 and
node 5, especially the maximum value. It means the latency
tend to diversify and become more significant with more
hop.

For the block-oriented latency, we measure the time
consumption for an empty block to be transferred from the
mining node to each data node 100 times. We show the
measurement results in Fig. 10. Again, the latency has a
positive relationship with the number of hops. However,
the nodes only transfer and validate the block header
with no transaction inside a block. There is no need for

transaction verification and subsequent state modification.
Hence, latency in the baseline scenario can be regarded as a
reference to the following realistic scenario

5.2.2 Realistic scenario

The results in the realistic scenario show the latencies
with workloads. For the transaction-oriented latency, we
measure the time consumption of transmitting 10 and
100 transactions. Figure 11 shows the results of two
workloads. Comparing to the baseline, we can see that at
each node, processing more transactions spends more time.
For each workload, the latency also has an approximately
linear increase along with the number of hops. Notice
that when we transfer ten times the transactions, the
latency is not ten times the previous one. It is because
the blockchain receives transactions continuously. They
don’t wait until a transaction is verified to accept the next
one. Moreover, the error bar is bigger when the number
of transactions is larger. The reason is related to the
RTT. The blockchain network transmits each transaction

3083Peer-to-Peer Netw. Appl. (2021) 14:3075–3091



Fig. 8 Deployment of private Ethereum blockchain on the cloud

independently. Therefore, there more transactions are sent,
the more RTTs will be added to the latency. The RTT value
is affected by the network condition. Thus, the latency is
more diverse when transmitting more transactions.

For the block-oriented latency, we measure the time
consumption of transmitting a block with 1, 10, and 100
transactions. Figure 12 shows the results of the latency in
those three scenarios. Comparing to the baseline, we can
observe that at each node, transmitting a block with more
transactions spends more time (the relationship of block size
and transaction is shown in Fig. 13.) For each workload,
the latency value linearly increases following the number of
hops. A block with one transaction consumes approximately

Table 2 Configuration of cloud nodes

Node CPU Memory OS Location

Node 1 2 vCPUs 2 GB Ubuntu 18.04 Northen Europe

Node 2 2 vCPUs 2 GB Ubuntu 18.04 Western America

Node 3 4 vCPUs 4 GB Ubuntu 18.04 East Asia

50 ms more than an empty block. That is the time for
the client to start the verification process. Moreover, the
latency in the one transaction case is close to that in the 10
transactions scenario, which means to verify a transaction is

Fig. 9 Transaction-oriented latency in the baseline scenario

3084 Peer-to-Peer Netw. Appl. (2021) 14:3075–3091



Fig. 10 Block-oriented latency in the baseline scenario

quicker than initialize the verification process. Additionally,
we can observe that, for the latency in 100 transaction-
case. The first hop from the mining node to the data
node consumes averagely 148.32 milliseconds. Other nodes
spend roughly 50 milliseconds for each hop. It is because
each node propagates blocks before processing them locally.
Ethereum holds this mechanism to propagate blocks to the
entire network as soon as possible. We also notice that
the transaction-oriented latency is lower than the block-
oriented latency when transmitting 1 or 10 transactions,
while the block-oriented latency is more significant than
the transaction-oriented latency when transmitting 100
transactions.

5.2.3 Performance monitoring

We enable the monitoring tools on each local RPI node to
inspect resource consumption for two hours, during which
those nodes send one transaction per second with the miner
engaged. The network involved 647 blocks containing about

Fig. 11 Transaction-oriented latency in the realistic scenario

Fig. 12 Block-oriented latency in the realistic scenario

28800 transactions over the duration. The performance
parameters supporting the network are list as following:

Disk space usage: The increment of used disk space
on each local node is shown in Fig. 14a. Throughout
the monitoring, the involved transactions, blocks, plus
execution results are stored in disk space. The size of a block
depends on the number of transactions inside, as Fig. 13
indicates. An empty block takes 537 Bytes space, and each
transaction takes about 200 Bytes (various on different types
of transactions.) However, the local RPI nodes record the
Geth log activities, which primarily occupy the disk space
increment. By decreasing the verbosity of the client output,
the RPI nodes can significantly save disk space usage.

Memory usage: In our experiments, all the RPI nodes
consume 256 KB swap space, which is negligible. Thus,
we present the memory variation on each non-mining
node in Fig. 14b. It indicates that the non-mining RPI
nodes need approximately 650 MB memory. The memory
is consumed by Geth and Web3.js library. Geth keeps

Fig. 13 Relationship between the block size and the number of
transactions inside the block

3085Peer-to-Peer Netw. Appl. (2021) 14:3075–3091



Fig. 14 Performance monitoring results of non-mining node in the indoor testbed

unmined transactions and the state trie in memory space,
which is dynamically adjusted by mined transactions’
execution results. Notice that transactions are produced
on each RPI node locally. Alternatively, we can install
the RPC remotely from another device to reduce memory
consumption. However, the measurement latency will likely
become inaccurate.

CPU utilization: The CPU utilization rate of each
node is shown in Fig. 14c. We use iostat command to
capture the results. The RPI nodes consume approximately
2% of the CPU because the verification of blocks and
transactions do not require massive calculation. On the
contrary, according to our observation, the mining process
consumes almost all of the CPU on the laptop. The CPU
utilization is slowly growing because iostat command
calculates the average CPU time since it was booted. While,

Table 3 Throughput on RPI nodes (Bytes/s)

Node 1 Node 2 Node 3 Node 4

Idle 232.63 219.65 222.94 122.78

Running 4837.23 4623.88 4759.25 2042.71

from a long-lasting view, the CPU utilization is stable on
RPI nodes.

Network throughput : We first monitor the idle
situation, in which the nodes are connected without mining
or sending transactions. The nodes keep confirming the
peer connections and checking the highest block. We
then investigate the running situation, in which the miner
starts mining, and all non-mining nodes keep submitting
transactions one per second. Figure 14d shows the amount
of transmitted and received data on the wireless interface
of each RPI in the running situation. The first three nodes
transmit more data than received because they have two
peers to propagate, while node 4 only has one. We calculate
the total throughput of both situations in Table 3. The
throughput of node 4 in both situations is approximately half
of the other nodes.

Table 4 Average memory space usage of three states (MB)

States Idle Connected Running

Node 1 198.46 245.48 687.78

Node 2 195.84 244.89 682.54

Node 3 246.83 293.92 378.97

3086 Peer-to-Peer Netw. Appl. (2021) 14:3075–3091



Table 5 Total network throughput (MB/s)

States Connected Running

Node 1 0.185 1.929

Node 2 0.191 1.859

Node 3 0.236 3.738

We first monitor the idle situation, in which the nodes
are connected without mining or sending transactions. The
nodes keep confirming the peer connections and checking
the highest block. We then investigate the running situation,
in which the miner starts mining, and all non-mining nodes
keep submitting transactions one per second. Figure 14d
shows the amount of transmitted and received data on the
wireless interface of each RPI in the running situation. The
first three nodes transmit more data than received because
they have two peers to propagate, while node 4 only has
one. We calculate the total throughput of both situations
in Table 3. The throughput of node 4 in both situations is
approximately half of the other nodes (Tables 4 and 5).

5.3 Evaluation in cloud-based network

5.3.1 Latency evaluation

We evaluate the two types of latency of single-hop in the
blockchain network deployed on the cloud (i.e., the structure
is in Fig. 8b). The difference between this network and
the indoor one is that the round trip time (RTT) is distinct
in long-distance data transmission. We initially measure
the RTT using the P ing command. The average RTTs are
presented in Table 6. Before the latency measurement, we
also synchronize every node’s system time to an NTP server
for accuracy. Then we estimate transaction-oriented latency
and block-oriented latency from node 1 and 2 to node 3.

T ransaction − oriented latency: Since Ethereum
propagates each transaction separately and continuously, we
collect the transaction-oriented latency of 1000 transactions
in this evaluation. The latency values on each node are
shown in Fig. 15. Averagely, Node 1 needs 149.53 ms
to send a transaction to node 3 on average, while node
2 needs 71.23 ms. Compared with the local network,
the latency is more stable, taking advantage of robust

Table 6 Average latency to node 3 (ms)

node 1 node 2

Ping 297.36 139.67

Transaction-oriented latency 149.53 71.23

Block-oriented latency (empty) 151.82 73.17

Block-oriented latency (filled) 181.01 121.57

Fig. 15 Transaction-oriented latency in the cloud deployment

network infrastructure over the cloud platform. Moreover,
the average latency value is almost half of the RTT.

Block − oriented latency: In this evaluation, we
first measure the block-oriented latency of transmitting an
empty block, revealing block-oriented’s baseline. Then, we
measure the latency in the case of non-empty blocks. The
results are presented in Fig. 16. An empty block contains
only the block header, which can be loaded in few TCP
packets. Thus, the block-oriented latency of empty blocks
has a similar performance with transaction-oriented latency
in Table 6, near half of the RTT. With transactions filled to
the block body, a block’s size varies from 1000 to 10000
bytes. The block-oriented latency becomes larger.

5.3.2 Performance monitoring

Disk space usage: During the mining process, the blocks
are periodically produced (i.e., about 10 seconds per block).
The number of blocks and the corresponding increment of
disk space usage on each node is shown in Fig. 17a. Geth

Fig. 16 Block-oriented latency in the cloud deployment

3087Peer-to-Peer Netw. Appl. (2021) 14:3075–3091



(a) (b)

(c) (d)

(e) (f)

Fig. 17 Performance monitoring results in the cloud-based network

uses its specialized key-value database [12] to store account
address and its mapped value. It also uses Merkle Patricia
Trie (MPT) to store sequenced transactions. Because we
keep calling the same smart contract without introducing
new accounts or codes, the subsequent transactions come
into effect by modifying the previous value. Therefore,
disk space usage is mostly lower than the accumulated
block size (i.e., 1152 bytes per block on average), revealing
the merit of private Ethereum blockchain with predefined

functionalities. Moreover, node 3 keeps a steady growth,
while node 1 and node 2 have the same tendency with a
point of inflection related to the database behavior.

Memory usage: In the experiment, we did not observe
the devices consuming swap space. Thus, we present the
memory variation, which is the RAM space usage, on
each node in Fig. 17b, c and d with three states. We
boot up our devices without doing anything in idle state,
representing the baseline memory usage. Then, we start the

3088 Peer-to-Peer Netw. Appl. (2021) 14:3075–3091



Geth clients and connect without sending transactions or
mining. Nodes only maintain the connection with necessary
communication, which consumes minimal memory space
in connected state. Then we start Web3.js and the mining
work, which turn to the running state. The average value
is shown in Table 4. We can notice that the used memory
space increment from idle to connected is roughly 50
MB, represents the memory space a node run statically
consumes. Afterward, the mining process occupies 85.05
MB, while the Web3.js occupies 439.98 MB on average.
The results indicate the current popular interaction method,
Web3.js, consumes appreciable memory space.

CPU utilization: Figure 17e shows the immediate CPU
utilization of each node, which is the percent of CPU time
used by user . The mining node consumes approximately
99.67% of the CPU time because solving Pow problems
requires significant calculation power. On the contrary,
the non-mining nodes consume 0.84% and 0.79% of the
CPU time, respectively, which also need to verify received
transactions and blocks. The results prove that the Ethereum
PoW problem is hard-to-solve and easy-to-verify.

Network throughput : Considering the network
throughput, we also evaluated the connected and running

states. The total network throughput is concluded in
Table 5. According to the ETH protocol, nodes continu-
ously confirm the connection and share the latest block
in the connected state. Those data are also emitted when
transferring transactions or blocks. Therefore, the data
transmitted in the running state is mostly caused by trans-
actions and blocks. Moreover, due to node 3 having two
times the number of peers than node 1 and 2, the total
throughput also approximately doubled. While we look
detailed into transmitted and received data in Fig. 17f, node
1 and 2 send transactions at the same frequency. They have
a nearly equal transmission and receiving. However, node
3 receives a little bit lower than transmitted, for it rejects
some redundant transmission.

6 Conclusion and future work

The private blockchain with many advanced features is the
potential technology for many IoT applications. However, in
general, the blockchain deployment is considerably heavy
to the IoT devices. Hence, it is crucial to understand
the blockchain performance in IoT scenarios. This paper
introduces an experimental study that reveals various
performance parameters of private Ethereum networks in
IoT scenarios. Our first focus is the latency performance.
We have clarified two types of latency (i.e., transaction-
oriented and block-oriented latency) and presented the
measurement methodology. The method is effective to get
the latencies in the indoor testbed and the cloud-based
blockchain network. The results give us an observation

of the latencies’ relationship with the number of hops.
Additionally, we implement lightweight monitoring tools,
which use Linux internal commands. We use the tools to get
various performance parameters of the nodes running the
Ethereum implementation.

In the future, first, we plan to extend our work by
considering complex structures instead of linear ones in
this work. The complex structure will likely appear in real
applications, where the node discovery protocol randomly
forms the blockchain network topology. Each node, which
has a different number of peers, will propagate full blocks
to a portion of their peers while transmitting block header to
the remaining peers. The path of block propagation becomes
uncertain, and the latency also diverse in this circumstance.
Second, we are going to investigate the latency performance
of executing more complex smart contracts. In a real
deployment, we need to quantify the impact of the various
execution’s impacts on the latency. Finally, we will extend
the monitoring system to include more blockchain, system-
related parameters.

Acknowledgments This work was funded in part by Vingroup Joint
Stock Company (Vingroup JSC), Vingroup and supported by Vingroup
Innovation Foundation (VINIF) under project code VINIF.2020.DA09
in part by JSPS KAKENHI Grant Number 19K20251, 20H04174.
Additionally, Kien Nguyen is supported by the Leading Initiative
for Excellent Young Researchers (LEADER) program from MEXT,
Japan.

References

1. Ali D, KS S, Raja J (2016) Blockchain in internet of things:
challenges and solutions. arXiv:160805187

2. Ali D, KS S, Raja J, Praveen G (2017) Blockchain for iot
security and privacy: the case study of a smart home. In:
IEEE international conference on pervasive computing and
communications workshops. IEEE, pp 618–623

3. Ali O, Jaradat A, Kulakli A, Abuhalimeh A (2021) A comparative
study: blockchain technology utilization benefits, challenges and
functionalities. IEEE Access 9:12,730–12,749

4. Anh DTT, Ji W, Gang C, Rui L, Chin OB, Lee TK (2017)
Blockbench: a framework for analyzing private blockchains. In:
Proc. ACM international conference on management of data,
pp 1085–1100

5. Atlam HF, Alenezi A, Alassafi MO, Wills G (2018) Blockchain
with internet of things: benefits, challenges, and future directions.
International Journal of Intelligent Systems and Applications
10(6):40–48

6. Chen X, Nguyen K, Sekiya H (2020) Characterizing latency
performance in private blockchain network. In: International
conference on mobile networks and management. Springer,
pp 238–255

7. Christian D, Roger W (2013) Information propagation in the
bitcoin network. In: Proc. IEEE P2P 2013, pp 1–10

8. EthereumDevp2p https://urldefense.proofpoint.com/v2/url?u=https
-3A github.com ethereum devp2p&d=DwIGaQ&c=vh6FgFnduej
NhPPD0fl yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXt
WAG1eT2mTMD NJ-ANv3H9feUw xMw&m=cGA8VFmG65h
Q 4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=TWhUlf32mvkIK

3089Peer-to-Peer Netw. Appl. (2021) 14:3075–3091

http://arxiv.org/abs/160805187
https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_ethereum_devp2p&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=TWhUlf32mvkIKhH937nE0mpE9Id9IYFCqLPDr9wUbvA&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_ethereum_devp2p&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=TWhUlf32mvkIKhH937nE0mpE9Id9IYFCqLPDr9wUbvA&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_ethereum_devp2p&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=TWhUlf32mvkIKhH937nE0mpE9Id9IYFCqLPDr9wUbvA&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_ethereum_devp2p&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=TWhUlf32mvkIKhH937nE0mpE9Id9IYFCqLPDr9wUbvA&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_ethereum_devp2p&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=TWhUlf32mvkIKhH937nE0mpE9Id9IYFCqLPDr9wUbvA&e=


hH937nE0mpE9Id9IYFCqLPDr9wUbvA&e= (Access date: 2021
Mar.)

9. Ethereum geth client https://urldefense.proofpoint.com/v2/url?u=
https-3A geth.ethereum.org &d=DwIGaQ&c=vh6FgFnduejNhPP
D0fl yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG
1eT2mTMD NJ-ANv3H9feUw xMw&m=cGA8VFmG65hQ 4fS
ZEBNK42nE5WuDzD36r9U-poJdu0&s=Ji3dWNInBj-S6VVIi9X
shyZoxIuEvdTAmZG-gL5DvgU&e= (Access date: 2021 Mar.)

10. Ethereum javascript api https://urldefense.proofpoint.com/v2/url?
u=https-3A web3js.readthedocs.io en v1.3.0 &d=DwIGaQ&c=v
h6FgFnduejNhPPD0fl yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8
RSOvQ9oXtWAG1eT2mTMD NJ-ANv3H9feUw xMw&m=cG
A8VFmG65hQ 4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=Yg6
adc0aKjdcutz0r4sG2yywM L1EsTNRnCaSNCSnLw&e=
(Access date: 2021 Mar.)

11. Gavin W (2014) Ethereum: a secure decentralised generalised
transaction ledger. Ethereum project yellow paper 151(2014):1–
32

12. Google Leveldb https://urldefense.proofpoint.com/v2/url?u=https
-3A github.com google leveldb&d=DwIGaQ&c=vh6FgFnduejNh
PPD0fl yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtW
AG1eT2mTMD NJ-ANv3H9feUw xMw&m=cGA8VFmG65hQ
4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=K2YKFupTwNc1n5
At Xw6yefNWy31oVDEzYE0KVWrHYo&e= (Access date:
2021 Mar.)

13. Heena R, Amr M, Mohsen G (2020) A survey of blockchain
enabled cyber-physical systems. Sensors 20(1):282

14. Konstantinos C, Michael D (2016) Blockchains and smart
contracts for the internet of things. IEEE Access 4:2292–2303

15. Kshetri N (2017) Can blockchain strengthen the internet of things?
IT Professional 19(4):68–72

16. Kuang LS, Yue L, Yen CS, Xiwei X, Qinghua L, Liming Z,
Huansheng N (2019) Analysis of blockchain solutions for iot: a
systematic literature review. IEEE Access 7:58,822–58,835

17. Kyun KS, Zane M, Siddharth M, Joshua M, Andrew M,
Michael B (2018) Measuring ethereum network peers. In:
Proceedings of the internet measurement conference 2018, pp 91–
104

18. Liu Q, Yu L, Jia C (2020) Mover: stabilize decentralized finance
system with practical risk management. In: Proc. conference on
blockchain research & applications for innovative networks and
services (BRAINS). IEEE, pp 55–56

19. Maymounkov P, Mazieres D (2002) Kademlia: a peer-to-peer
information system based on the xor metric. In: Proc. springer
international workshop on peer-to-peer systems, pp 3–65

20. Nandar AY, Thitinan T (2017) Review of ethereum: smart home
case study. In: Proc. 2nd IEEE international conference on
information technology (INCIT), pp 1–4

21. Novo O (2018) Blockchain meets iot: an architecture for scalable
access management in iot. IEEE Internet of Things Journal
5(2):1184–1195

22. Quanqing X, Chao J, Mohamed RMFB, Bharadwaj V, Mi AKM
(2018) Blockchain-based decentralized content trust for docker
images. Multimedia Tools and Applications 77(14):18,223–
18,248

23. Quanqing X, Zhaozheng H, Zengxiang L, Mingzhong X (2018)
Building an ethereum-based decentralized smart home system.
In: Proc. IEEE 24th international conference on parallel and
distributed systems (ICPADS), pp 1004–1009

24. Seyoung H, Sangrae C, Soohyung K (2017) Managing iot devices
using blockchain platform. In: Proc. IEEE 19th international
conference on advanced communication technology, pp 464–467

25. Shi N, Tan L, Li W, Qi X, Yu K (2020) A blockchain-empowered
aaa scheme in the large-scale hetnet. Digital Communications and
Networks

26. Suporn P, Chaiyaphum S, Thajchayapong S (2017) Performance
analysis of private blockchain platforms in varying workloads.
In: Proc. 26th IEEE international conference on computer
communication and networks (ICCCN), pp 1–6

27. Wüst K, Gervais A (2018) Do you need a blockchain? In:
Proc. IEEE Crypto valley conference on blockchain technology
(CVCBT), pp 45–54

28. Yu K, Tan L, Shang X, Huang J, Srivastava G, Chatterjee
P (2020) Efficient and privacy-preserving medical research
support platform against covid-19: a blockchain-based approach.
Consumer Electronics Magazine

29. Yu KP, Tan L, Aloqaily M, Yang H, Jararweh Y (2021)
Blockchain-enhanced data sharing with traceable and direct
revocation in iiot. Transactions on Industrial Informatics

30. Zheng P, Zibin Z, Xiapu L, Xiangping C, Xuanzhe L (2018)
A detailed and real-time performance monitoring framework for
blockchain systems. In: Proc. IEEE/ACM ICSE-SEIP, pp 134–
143

31. Zibin Z, Shaoan X, Hongning D, Xiangping C, Huaimin W (2017)
An overview of blockchain technology: architecture, consensus,
and future trends. In: Proc. IEEE international congress on big
data (BigData congress), pp 557–564

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Xuan Chen received the B.S.
degree in information engi-
neering from Xi’an Jiaotong
University, Xi’an, China, in
2018. He is currently pursuing
the M.S. degree in graduate
school of science and engi-
neering from Chiba Univer-
sity, Chiba, Japan. His current
research interests include the
blockchain as a service and the
underlying P2P networks.

Kien Nguyen received the
B.E. degree in electronics
and telecommunication from
the Hanoi University of Sci-
ence and Technology (HUST),
Vietnam, in 2004, and the
Ph.D. degree in informatics
from the Graduate University
for Advanced Studies, Japan,
in 2012. He is currently an
Assistant Professor with the
Graduate School of Science
and Engineering, Chiba Uni-
versity. His research covers a
wide range of topics, includ-
ing the Internet, the Internet

of Things technologies, wired and wireless communication. He has
published more than 100 publications in peer-reviewed journals and
conferences and three patents. He is a senior member of IEEE and a
member of IEICE. He also involves in IETF activities.

3090 Peer-to-Peer Netw. Appl. (2021) 14:3075–3091

https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_ethereum_devp2p&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=TWhUlf32mvkIKhH937nE0mpE9Id9IYFCqLPDr9wUbvA&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__geth.ethereum.org_&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=Ji3dWNInBj-S6VVIi9XshyZoxIuEvdTAmZG-gL5DvgU&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__geth.ethereum.org_&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=Ji3dWNInBj-S6VVIi9XshyZoxIuEvdTAmZG-gL5DvgU&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__geth.ethereum.org_&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=Ji3dWNInBj-S6VVIi9XshyZoxIuEvdTAmZG-gL5DvgU&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__geth.ethereum.org_&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=Ji3dWNInBj-S6VVIi9XshyZoxIuEvdTAmZG-gL5DvgU&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__geth.ethereum.org_&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=Ji3dWNInBj-S6VVIi9XshyZoxIuEvdTAmZG-gL5DvgU&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__geth.ethereum.org_&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=Ji3dWNInBj-S6VVIi9XshyZoxIuEvdTAmZG-gL5DvgU&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__web3js.readthedocs.io_en_v1.3.0_&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=Yg6adc0aKjdcutz0r4sG2yywM_L1EsTNRnCaSNCSnLw&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__web3js.readthedocs.io_en_v1.3.0_&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=Yg6adc0aKjdcutz0r4sG2yywM_L1EsTNRnCaSNCSnLw&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__web3js.readthedocs.io_en_v1.3.0_&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=Yg6adc0aKjdcutz0r4sG2yywM_L1EsTNRnCaSNCSnLw&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__web3js.readthedocs.io_en_v1.3.0_&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=Yg6adc0aKjdcutz0r4sG2yywM_L1EsTNRnCaSNCSnLw&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__web3js.readthedocs.io_en_v1.3.0_&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=Yg6adc0aKjdcutz0r4sG2yywM_L1EsTNRnCaSNCSnLw&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__web3js.readthedocs.io_en_v1.3.0_&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=Yg6adc0aKjdcutz0r4sG2yywM_L1EsTNRnCaSNCSnLw&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_google_leveldb&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=K2YKFupTwNc1n5At_Xw6yefNWy31oVDEzYE0KVWrHYo&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_google_leveldb&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=K2YKFupTwNc1n5At_Xw6yefNWy31oVDEzYE0KVWrHYo&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_google_leveldb&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=K2YKFupTwNc1n5At_Xw6yefNWy31oVDEzYE0KVWrHYo&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_google_leveldb&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=K2YKFupTwNc1n5At_Xw6yefNWy31oVDEzYE0KVWrHYo&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_google_leveldb&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=K2YKFupTwNc1n5At_Xw6yefNWy31oVDEzYE0KVWrHYo&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_google_leveldb&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=8IEA8RSOvQ9oXtWAG1eT2mTMD_NJ-ANv3H9feUw_xMw&m=cGA8VFmG65hQ_4fSZEBNK42nE5WuDzD36r9U-poJdu0&s=K2YKFupTwNc1n5At_Xw6yefNWy31oVDEzYE0KVWrHYo&e=


Hiroo Sekiya was born in
Tokyo, Japan, in July 1973.
He received the B.E., M.E.,
and Ph.D. degrees in electrical
engineering from Keio Uni-
versity, Yokohama, Japan, in
1996, 1998, and 2001, respec-
tively. Since April 2001, he
has been with Chiba Uni-
versity, Chiba, Japan, where
he is currently a Professor
with the Graduate School
of Science and Engineering.
His research interests include
high-frequency high-efficiency
tuned power amplifiers, res-

onant dc/dc power converters, dc/ac inverters, and digital signal
processing for wireless communications. He is a Senior Member
of the Institute of Electronics, Information and Communication
Engineers (IEICE), Japan, and a member of Institute of Electronics,
Information Processing Society of Japan (IPSJ) and the Research
Institute of Signal Processing (RISP), Japan.

3091Peer-to-Peer Netw. Appl. (2021) 14:3075–3091


	An experimental study on performance of private blockchain in IoT applications
	Abstract
	Introduction
	Related work
	Background
	Node discovery protocol
	The RLPx transport protocol
	Ethereum wire protocol


	Methodology
	Latency characterization
	Transaction-oriented latency
	Block-oriented latency

	Monitoring tools

	Evaluation
	Blockchain network environments
	Evaluation in indoor testbed
	Baseline scenario
	Realistic scenario
	Performance monitoring

	Evaluation in cloud-based network
	Latency evaluation
	Performance monitoring


	Conclusion and future work
	References


