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Abstract—Blockchain technologies have been emerging with
the potential to disrupt many fields (e.g., cryptocurrencies replac-
ing the traditional ones, enabling trustworthy voting, etc.). The
Internet of Things (IoT) has been predictably strengthened when
integrating to the private blockchain, such as Ethereum. In an
IoT deployment with private Ethereum, a thorough understand-
ing of the latency is a critical issue that has not been adequately
understood in the literature. Motivated by that, this work aims to
comprehend the latency performance in the IoT Ethereum with
two popular consensus algorithms: Proof of Work (PoW) and
Proof of Authority (PoA). Initially, we clarify different latency
segments from transaction submission to execution, namely, the
transaction lifecycle in a private blockchain. We then consider
the three related latency metrics: 1) transaction-oriented latency;
2) mining time; and 3) block-oriented latency in the PoW case.
With PoA, the mining time’s consideration is omitted since the
mining process is not necessary. After that, we construct a realis-
tic private Ethereum IoT network (i.e., using a laptop and seven
Raspberry Pi 3b+ nodes) and a large-scale emulated one with
30 nodes. We write and deploy a smart contract to read and
write data to the blockchain and measure the latencies in var-
ious scenarios. The measurement results reveal the values of
transaction-oriented and block-oriented latency with PoW and
PoA in both the actual and emulated networks. Moreover, we
derive the expected value for the PoW’s mining time by fitting
the probabilities to an exponential curve.

Index Terms—Ethereum, latency, private blockchain, Proof of
Authority (PoA), Proof of Work (PoW).

I. INTRODUCTION

BLOCKCHAIN technology is a verifiable ledger of trans-
actions that distributes the data storage via consensus

mechanisms. The mechanisms, integrating with peer-to-peer
(P2P) transportation and encryption algorithms, have been
widely accepted in many fields. Initially, the blockchain has
been distinctive for decentralizing monetary transactions and
trade (e.g., Bitcoin [1]). It then brings many revolutionary
changes to the traditional finance system [2], voting plat-
form [3], healthcare [4], vehicle communication [5], etc.
Among the potential applications, the blockchain promis-
ingly strengthens the Internet of Things (IoT) on various
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aspects [6], [7]. The blockchain introduces decentralization
to the IoT systems, significantly improving the IoT devices
cooperation [8] and scalability [9]. The IoT devices can share
information without pretrusting each other or trusting a central
authority [10]. Moreover, the historical records are reachable
for any participators in the network.

Ethereum blockchain is one of the most popular open source
blockchain platforms [11]. Ethereum associates with the cryp-
tocurrency named Ether in the public blockchain network (e.g.,
Mainnet), which is accessible for anyone. The public Ethereum
blockchain is considerably heavy for IoT because it requires
a huge amount of resource consumption, high transaction fees
while providing low throughput and long latency. On the other
hand, the private Ethereum can be programmed following the
IoT application’s performance requirement. Hence, the private
Ethereum is more suitable for IoT. The Ethereum blockchain
has various consensus algorithms, including Proof of Work
(PoW), Proof of Authority (PoA), Proof of Stake (PoS), etc.
Moreover, it supports smart contracts, which are automatically
executed codes on the blockchain when triggered by transac-
tions [12]. Smart contracts allow users to construct various
functionalities or customize them following the needs of differ-
ent IoT scenarios. For example, in the smart home applications
[13], [14], the smart contracts let house appliances store, share,
or modify blockchain states cooperatively. In [15] and [16], the
smart contracts are constructed to conduct access control and
identification on IoT devices.

Despite many salient features, the latency performance is
still one of the biggest concerns when deploying blockchain
[17], [18]. Several previous works have evaluated the
blockchain latency with different definitions in transaction exe-
cution processes. Most of them consider the latency from
partial perspectives rather than the entire transaction interval
involved in the blockchain network. In [19], the latency is
understood as the period of reaching a consensus. Additionally,
in [20], the latency is exactly the block mining time in PoW.
Both works only extract the time cost of the consensus process,
hence excluding the information propagation process. In [21],
the latency is defined as the interval between the transaction
submission and its first confirmation. However, the latency
concentrates on the transaction acceptance speed; meanwhile,
the transactions are not truly executed at this stage. Notably,
Lo et al. [22] have conducted a systematic review of 35 pub-
lished papers on blockchain-IoT solutions. They found that it is
necessary to understand blockchain’s end-to-end performance
from transaction submission to being accepted, aiming to
thoroughly and correctly evaluate the blockchain-based IoT
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implementations. This issue motivates us to quantify the
latency performance from a complete perspective. To the best
of our knowledge, a thorough understanding of blockchain
latency has not been available yet in the literature.

This research presents a method of comprehending the
entire latency in private Ethereum blockchain-based IoT
networks with two popular consensus algorithms (PoW and
PoA). We initially define a complete process from transaction
submission to acceptance named the transaction lifecycle. We
then clarify three latency components following the transac-
tion lifecycle: 1) transaction-oriented latency; 2) mining time;
and 3) block-oriented latency. In the PoW case, we consider
all three, while in the IoT blockchain with PoA, the mining
time is omitted since the blocks are generated at a fixed pace
instead of mined for a variable period with PoW. After that, we
investigate the defined latency components in an actual testbed
and an emulated network. The implemented testbed includes a
laptop and seven IoT devices (i.e., Raspberry Pi 3b+), aiming
to mimic an IoT application. The emulated network contains
30 nodes that represent a large-scale IoT blockchain. The
devices form a private Ethereum blockchain in two networks
where a smart contract is preloaded to read and write strings
to the blockchain. We measure the latency components with
PoW and PoA in a baseline and a realistic scenario. The mea-
surement results show that regardless of the networks, the
transaction-oriented and block-oriented latency increases pro-
portionally to the hop number in both PoW and PoA. They
have similar transaction propagation, while the PoA network
transfers block quicker than the PoW one. Moreover, in the
large-scale network, the propagation latency is considerable
when disseminated to peers through a large number of hops.
We also measure the PoW algorithm’s mining time values,
which are inputs of a curve fitting method to find the con-
tribution and the expected mining time. The technique works
well with the original and customized Ethereum client (i.e.,
Geth).

The remainder of this article is organized as follows.
Section II presents related works. In Section III, we introduce
the background of the Ethereum blockchain. In Section IV,
we present our methodology in the latency investigation.
Section V describes the experiment setting and evaluation
results. Finally, Section VI concludes this article.

II. RELATED WORK

Blockchain is an attractive candidate for decentralizing IoT
systems. Kshetri [7] discussed the rationality of blockchain-
integrated IoT systems theoretically. They predict the IoT
systems can be strengthened with the decentralization essence
of blockchain, for example, in identity and access manage-
ment, avoiding the single point failures, reaching a higher
level of safety than the centralized method, and expanding
their scalability to accommodate more nodes. Accordingly,
there are many efforts to bring different blockchain imple-
mentations to IoT [23]. For example, the public blockchains
with varying consensus algorithms have been in IoT applica-
tions, such as Atonomi (PoW) [24], IoT Chain (PBFT) [25],
and VechainThor (PoA) [26]. Nevertheless, before public

blockchain can fully integrate with IoT applications, it must
overcome several difficulties, including scalability, energy effi-
ciency, and security [27]. Recently, the directed acyclic graph
(DAG)-based public chains such as IOTA attracted attention
since they offer feeless, fast, high throughput transactions, and
efficient operations on IoT devices [28]–[31]. However, the
public IOTA also needs to be further advanced to be more
compatible with IoT (e.g., maturing consensus mechanism,
reducing congestion, and preventing spam).

The private blockchains, including consortium blockchain,
have also been considered in many practical applications,
e.g., energy trading [32], identity management [33], and
Industrial IoT [34], [35]. Among those, the private Ethereum
blockchain has been found in various applications. Dorri et al.
[36], [37] presented an overview of the private Ethereum
blockchain-based smart home system (SHS). The SHS inte-
grates home appliances and various sensors, which obtain
and share information. In the SHS, an elected miner serves
as a cluster header (CH) to implement access control and
communicate with other CHs. The work in [14] presented
a more realistic smart home application that also uses a
private Ethereum blockchain. The system comprises four
major components (i.e., temperature and humidity sensors,
a smartphone-based visualization application, a Raspberry Pi
3b, and a computer). They manage decentralized data shar-
ing over a private blockchain. Mohanta et al. [38] proposed a
decentralization authentication scheme for IoT systems based
on Ethereum blockchain, which achieves identity registration,
key management, and digital signatures in a decentralized way.
Those works focus more on the feasibility than quantify the
blockchain-system performance.

Following the emerging IoT blockchain application, eval-
uation frameworks are needed to understand and analyze a
blockchain-network performance. Dinh et al. [39] proposed
Blockbench, an overall framework to explore different pri-
vate blockchain platforms’ performance. They consider a
blockchain network in a four-layer architecture and evaluate
the performance of each layer. However, the latency metric
is defined as the response time per transaction, which does
not cover the propagation latency between different nodes.
The work in [40], an extension of Blockbench, investigated
different workloads with varying numbers of transactions to
the application layer. Like the Blockbench paper, the authors
considered the latency as the submission and reception of a
transaction in the blockchain’s first node, indicating the trans-
action is trusted to be accepted. The latency metric cannot
reflect the time taken by different processes of how the trans-
action is embraced into the blockchain. Mikkelsen et al. [41]
investigated the mining time and provided an average value.
They also indicated that the mining time follows the expo-
nential distribution by inspection. In this case, an expected
value is better describing the expectation of the mining time
than an average value. Different from [41], we have evaluated
and confirmed the distribution by measurement and statisti-
cal analysis. The works in [42] and [20] provided an average
time for block generation. Moreover, they consider the con-
firmation delay, which refers to the time it takes for a block
to be included in the canonical Ethereum chain (e.g., seven
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TABLE I
COMPARISON OF PREVIOUS WORKS AND OURS

blocks after mined). Aoki et al. [43] introduced a blockchain
simulator with two latency parameters: 1) block interval and
2) propagation delay. The latter parameter is characterized as
propagation delay following Pareto distribution. We summa-
rize and compare those works to ours in Table I regarding the
latency depiction, consensus, and method. The table presents
the latency metrics, each with a corresponding parameter in
our work.

In this work, we present a transaction lifecycle with
three latency metrics. Unlike the previous work, the met-
rics are extracted following the transmission process on the
blockchain. Moreover, we measure the latency metrics in the
Ethereum IoT blockchain with two popular consensus algo-
rithms PoW and PoA. Our early work has been previously
introduced in [44], which investigates only PoW and ignor-
ing mining time. This work advances [44] by an additional
consideration of PoA. Moreover, we present a method to fit
the exponential curve and measure the mining time’s expected
value.

III. ETHEREUM BACKGROUND

Ethereum blockchain is a transaction-based state machine,
where the state information includes account balances, data of
smart contracts, etc. [12]. Any nodes in the blockchain network
can submit transactions to modify the state machine. Each
node establishes a transaction pool (txpool) in its local memory
space to maintain all received transactions. Submitted trans-
actions are propagated to all other nodes among txpools with
P2P communication. A mining node can select some transac-
tions from its txpool to form a block, which will be authorized
and secured by adding the hash output of the block content
and the result of consensus algorithm [45]. The freshly gen-
erated block is propagated to other nodes and confirmed by
validating the hash-value correctness. When the block is val-
idated, it will be appended to the local blockchain database.
Nodes will remove transactions in validate blocks from the
txpool. Once most nodes have accepted the block, they will
reach a consensus on the state modification.

Geth is the official implementation of Ethereum [46],
which propagates transactions and blocks following the P2P

networking protocols named DEVp2p [47]. DEVp2p includes
a node discovery protocol and an RLPx transport protocol.
Geth nodes reach consensuses on dealing with the dissemi-
nated information following consensus algorithms.

A. Ethereum DEVp2p Protocols

1) Node Discovery Protocol: In Geth, the node discov-
ery protocol uses a Kademlia-like distributed hash table
(DHT) [48] for efficiently locating and storing content in a
P2P network. Every node keeps a 256-bit identity or node ID
randomly generated from the Secp256k1 elliptic curve [49].
The logical distance between two nodes is defined as the bit-
wise XOR of two nodes ID (a and b) (distance(a, b) = a ⊕ b).
Each node maintains an Ethereum node record (ENR) con-
taining up-to-date information, including node ID, IP address,
TCP and UDP port, etc. The node also keeps the information
of its neighborhood nodes in a routing table. According to
the integer value of the distance, Ethereum divides the routing
table into several k-buckets. For each (0 ≤ i < 256), every
node keeps a k-bucket for nodes of distance between 2i and
2i+1 from itself. The current protocol uses k = 16, which
means every k-bucket contains up to 16 node entries.

2) RLPx Transport Protocol: The RLPx transport protocol
is a TCP-based transport protocol used for communication
among Ethereum nodes. Recursive length prefix (RLP) [50]
is a protocol to encode arbitrarily nested arrays of binary
data to serialize messages in Ethereum. Based on RLP, RLPx
enables nodes to transfer encrypted, serialized data. In RLPx,
two nodes need to perform a two-phase handshake to initialize
the session before transmitting essential messages. An RLPx
connection is established by creating a TCP connection and
agreeing on a pair of ephemeral keys for further encrypted and
authenticated communication. The process of creating session
keys between the initiator and the recipient is the first hand-
shake. After the negotiation, both sides of the connection send
a Hello message in the second handshake. They may send the
Disconnect message to inform a disconnection. The sender
can append a single byte of reason code in the message on
this disconnection. Alternatively, the Hello message exchanges
their supporting capabilities and the corresponding version.

3) Ethereum Wire Protocol: The Ethereum wire protocol
(ETH) is a subprotocol for exchanging blockchain information
between full nodes. The light Ethereum subprotocol (LES)
is a protocol used by the light nodes, which only download
block headers and fetch other parts on demand. It provides
full functionalities of safely accessing the blockchain. In the
following, we introduce the ETH version eth64, which is used
in this work. After the nodes agree to use ETH, they need
to exchange the Status messages, including the total diffi-
culty (TD) and the hash of their latest block. A node with a
lower TD after exchanging the Status messages will start syn-
chronization immediately. Concurrently, the nodes propagate
blocks and exchange transactions according to the protocol.
All pending transactions in the local pool are exchanged after
the Status messages. The nodes then require absent transac-
tions for synchronization. When a new transaction appears, the
new Transactions message is propagated to the entire network.
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Similarly, a NewBlock announcement message is disseminated
for declaration and PoW validation when producing a new
block. After that, the whole block is sent to a small fraction
of connected peers (i.e., the square root of the total number
of peers). When receiving a new block, the node imports the
block to its local database by executing all contained trans-
actions and modifying the state tree. Once the block is fully
processed, the node will propagate the block further to peers
without previous notification in NewBlockHashes message.

B. Ethereum Consensus Algorithms

1) Proof of Work: The PoW algorithm requires nodes to
comport with a feasible amount of effort to deter frivolous or
malicious behaviors. Specifically, the PoW algorithm involves
searching for an appropriate nonce for a mathematical puz-
zle whose hash function output is below a certain threshold
determined by the difficulty value as (1) indicates. The puz-
zle’s solution is difficult to find, while the verification is
straightforward. Since the hash algorithm output is evenly dis-
tributed when the input nonce is sequential, the Geth client
adopts an enumeration strategy by trying with multiple threads.
It enumerates nonce one after another until the output is
under a required threshold. A new block is then generated
by containing the searched nonce in the block header.

Regarding (1), the Hash function represents a series of com-
plex computational processes, with the input of the dataset of
a specific block and an integer nonce. The mining devices
expend computational power by calculating the Hash with
input nonce one by one until they find a proper one whose
output is lower than the threshold [the right-hand side of (1)].
BigInt is fixed (e.g., 2256 −1 in our case), and D is a difficulty
value. Hence, with a lower D, the threshold becomes lower,
the client can easily find a nonce after fewer attempts, lead-
ing to a shorter mining time and vice versa. Therefore, the
expected amount of effort in solving the problem is controlled
by the parameter difficulty value

Hash(dataset, nonce) ≤ BigInt

D
. (1)

Once a proper nonce is approved correctly, a block is gen-
erated by packing the nonce into the block header and verified
transactions to the block body. Other nodes confirm the cor-
rectness of the nonce when receiving the propagated blocks.
Subsequently, they reach a consensus on a block with the
nonce and transactions inside. With the uniformly distributed
output, Ethereum guarantees that the mining time for nonce
exploration depends on the difficulty threshold, making it pos-
sible to control the block mining time by manipulating the
difficulty value.

2) Proof of Authority: PoA is a consensus method in which
several nodes are entrusted to validate transactions and gen-
erate blocks. In an Ethereum network with PoA, there is
a limited number of validators whose identities are nor-
mally preapproved by a network constructor or administrator.
Periodically, one of those validators is randomly selected to
generate the next block, with the time interval is defined in
the first block. In a PoA Ethereum network, an account needs
to get more than half of the current validators’ consent to

join the validator pool. Moreover, they could remove a mali-
cious validator by more than half of the current validators
reaching an agreement. As a result, the validators are autho-
rized to verify transactions and generate blocks as correctly as
PoW works. However, unlike the PoW’s miners, which guar-
antee their correctness by dedicating computational power, the
PoA’s validators pledge their reputations. The malicious ones
will be removed and be rejected to rejoin the validator pool.
Thus, there is an incentive to retain the current position they
have gained. In general, the PoA-based Ethereum blockchain
provides a secure and trustless environment without too much
computational power for the mining task. However, as we
know, reputation cannot always keep validators from mali-
cious behaviors. Therefore, the PoA algorithm is usually used
for private network setup.

IV. METHODOLOGY

This research considers the IoT-based application of the pri-
vate Ethereum, in which the blockchain network can have a
linear connected, a partially connected, or a fully connected
topology. The public blockchain network usually forms a par-
tially connected blockchain network (i.e., formed by the Node
Discovery Protocol). In all cases, the blockchain information
(i.e., transactions or blocks) is propagated hop by hop to the
entire network. The nodes will declare the receipt of transac-
tions and blocks to avoid redundant transmission. Therefore,
the information is always propagated in a linear path. In the
following, we name the two latency metrics between a source
and destination nodes in a linear topology based on the trans-
action lifecycle and the blockchain synchronization. Hence,
the metrics are applicable to all types of topologies. We then
take an in-depth investigation on the mining time period.

A. Transaction Lifecycle

In a blockchain network, not all nodes are able or willing
to participate in the block generation processes, while every
node has the ability to receive and propagate transactions or
blocks. Thus, a proposed transaction needs to be propagated to
a mining node’s txpool through different hops to be involved
in a block. The block then traverses back to the entire network
including the submission node. Transactions will be removed
from txpools once receive the block to prevent double-mining.
Each node will verify and execute received transactions in the
Ethereum virtual machine (EVM), causing the Ethereum states
to change. Based on the observation of information transmis-
sion in a blockchain network, we present a transaction lifecycle
that includes the three steps, as shown in Fig. 1. Specifically,
the lifecycle indicates the duration from the submitted moment
to the time of becoming effective.

1) A transaction is submitted to the txpool and dissemi-
nated to a mining node.

2) The mining node executes the consensus algorithm and
generates blocks, which contain the submitted transac-
tion.

3) The blocks are broadcast to all nodes and received after
multiple hops’ propagation.
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Fig. 1. Transaction lifecycle from submission of the transaction to the
reception of the block generated by the mining node.

After the execution, the transaction will finally become effec-
tive. As indicated in Fig. 1, we name the leftmost process
as TOL, the middle one as block generation, and the right-
most one as BOL. In the Geth implementation, the transaction
and block transmissions are triggered by Transactions and
NewBlock messages of the Ethereum wire protocol, respec-
tively. Several other steps then follow them to complete the
transmissions. We analyze the Geth log with the highest level
of verbosity to record all the detailed information. We use that
to clarify the two processes’ workflow for TOL and BOL in
the private Ethereum network. Both PoW and PoA Ethereum
networks have the same workflow because they are only dif-
ferent in the task of block generation. The latency definitions
are presented in the next section.

B. Latency Following Transaction Lifecycle

1) Transaction-Oriented Latency: In Ethereum, the work-
flow of transmitting a transaction between a submission node
and a mining node is shown in Fig. 2(a). After a transaction
is submitted, it is pushed into a queue, waiting to be verified.
When the node finishes the verification (i.e., at the promoted
queued transaction point), the transaction is submitted and
added into the txpool (i.e., at the submitted transaction point),
in which it will be broadcast to the peers in Transactions mes-
sage. The peer node also first queues the received transaction
at the pooled new future transaction point. It then verifies
the transaction after the promoted queued transaction point.
Subsequently, the transaction is added to the txpool of this
peer, which is regarded as one transmission hop. This peer
repeats the process to propagate the transaction further to
other nodes. Therefore, the TOL is defined as the interval
between the submission moment in the submission node and
the promotion time in a receiving node, that is, one or multiple
hops away from the submission one. Hence, the TOL value
reflects the time consumption for a transaction to be propa-
gated through several hops. With a lower value of the TOL, a
submitted transaction can reach the entire network quicker.

2) Block-Oriented Latency: The mining node selects trans-
actions from txpool and packs them into a block with a
consensus algorithm, which will then be propagated to other
nodes. Fig. 2(b) shows the workflow of the block propagation.
Starting at the mined potential block point, the node sends the
block to its peers at the propagated block point. After the peer
receives the block, it is pushed into a queue at the queued

propagated block point. The peer imports the block at the
importing propagated block point and performs a quick verifi-
cation on the block header, which is the end of a transmission.
Then, to reach all the nodes as soon as possible, the block is
further propagated and executed simultaneously. At the prop-
agated block point, the peer has already finished repeating the
block transmission process to the next node. Then the node
inserts it in its local database and changes the state at inserted
block point. The peer announces the ownership of the block to
avoid duplicating transmission. The transaction executions are
not shown in the Geth log, and they vary on different smart
contracts. We name the end of the transaction lifecycle at the
imported new chain segment point. Consequently, the BOL is
defined as the interval from the block generation time to the
importing moment on another node (i.e., one or several hops
far away). The BOL value describes the time consumption
for a block to be propagated through different hops. A block
contains several verified transactions. After the block is prop-
agated and appended to a peer, those transactions are formally
accepted and come into effect. Thus, this latency describes
how fast a block traverses the network.

Our investigation in Fig. 2 shows the fundamental unit (i.e.,
a single hop) of TOL and BOL propagation workflows. In
a multiple-hop scenario, a peer repeats the same workflows
when communicating with its neighbors. In the transaction
case, each transaction is propagated separately and contin-
uously. The peer does not wait until all transactions in the
queue have been received before disseminating them further.
Similarly, in the block transmission, the peer will propagate
blocks before any deeper processes, aiming to cover the entire
network as fast as feasible. Because every node is equivalent
to each other and treats messages the same way, we construct
a linear model as shown in (2) to understand the propagation
process better

LN = Th × N + Tm (2)

in which LN denotes the propagation latency (i.e., TOL or
BOL) until the Nth-hop node and N is the number of hop.
During the transferring process, each node spreads the new
messages repeatedly, Th × N represents when a peer is aware
of the new messages since they are released. Meanwhile, Tm

shows the time consumption of receiving the whole message.
We will use a fitting method to find Th and Tm in our linear
topology network, in which each node has no more than two
peers.

3) Block Mining Time: The block mining time can be
defined as the mining task period to generate a block. It is
the process of solving a mathematical puzzle whose complex-
ity level is represented by a difficulty value. In the Ethereum
blockchain, when mining each block, the Geth client records
the associated timestamp. The mining time is, therefore, cal-
culated as the difference of the timestamps in two adjacent
blocks. When a mathematical puzzle with the same diffi-
culty value running on different devices, the one with higher
computing power tends to solve the puzzle within a shorter
time. However, Ethereum includes a dynamical adjustment
mechanism to adapt appropriate difficulty value for the next
mining block. The mechanism can be shown in the following
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Fig. 2. One-hop workflows of information propagation between nodes. (a) Processes of propagating a transaction and related transaction-oriented latency.
(b) Processes of propagating a block and related block-oriented latency.

equation1 [12]

DN =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
DN−1 + DN−1

2048 × max
[(

1 − M
10

)
,−99

])

(N < 200000)

(
DN−1 + DN−1

2048 × max
[
(1 − M

10 ),−99
]) + 2

N
100000 −2

(N ≥ 200000)

(3)

where DN and N are the current block difficulty and num-
ber, respectively. DN−1 is the difficulty of the parent block.
M is the block mining time, which is calculated by the times-
tamps’ difference in the current block and the parent block.
The equation has a corrective term when the block number is
over 200 000. While according to the equation under 200 000
blocks, we can know the following.

1) If the mining time is less than 10 s, the difficulty is
adjusted upward by ([DN−1]/2048).

2) If the mining time is within 10–19 s, the difficulty is
left unchanged.

3) If the mining time is greater or equal to 20 s, the
difficulty is adjusted downward proportional to the
timestamp difference from ([DN−1]/2048) to 99 ×
([DN−1]/2048).

When the block number is below 200 000, the current
block’s difficulty value is calculated based on the previous
difficulty value DN−1 and the mining time M. In a private
Ethereum blockchain, the initial difficulty value is defined
in the first block (i.e., block number 0). Afterward, as seen,
the Geth client dynamically adjusts the difficulty value based
on the mining time until it finds an appropriate value. The
adjusted difficulty value depends on the computing capabil-
ity on the mining device, which keeps the mining time at the
expected range (i.e., between 10 and 19 s).

In the mining process, Ethereum adopts an enumeration
strategy by trying an input nonce per time. Ethereum enu-
merates nonce one after another until an output meets (1).

1In Ethereum source code: consensus/ethash/consensus.go.

Each time the miner tries to calculate the output hash, it is an
independent event and is supposed to consume a fixed time
on the same device. Considering the properties of the hash
function, the nonce of correct proofs are randomly distributed
in the output space. When executing the PoW algorithm,
the miner continuously enumerates nonce and calculates the
output hashes. The arrivals of a correct nonce can occur
arbitrarily. Each calculation has a constant probability of meet-
ing the mathematical puzzle and resulting in a valid block.
According to the probability theory, the occurrence of correct
proofs in a specific time is regarded as a 1-D Poisson process
[51], [52] and the interval between two correct proofs (e.g.,
the mining time), therefore, follows an exponential distribution
[53] as the following shows:

f (x) =
{

ae−λx + b x,> 0
0, otherwise.

(4)

In this work, we first run various experiments and col-
lect the mining time and difficulty values. By calculating the
probabilities of each specific mining time value, we adopt a
probabilistic method to analysis the mining time. Then, we fit
the probabilities of different mining time values to (4), where
λ is the rate parameter related to the time interval of mining
blocks, a and b are optimal parameters. When the dynamic
difficulty value reaches a balance, the mining time is antic-
ipated to follow exponential distribution, which can then be
evaluated with an expected value.

V. EVALUATION

A. Experimental Setup

We build our private blockchain using a laptop (or server)
as a mining node and seven IoT devices. The server is used
only in the evaluation of block mining time. Each IoT device
is a single-board raspberry Pi 3b+ (RPi 3b+) (i.e., data node).
Table II summarizes the hardware and software configurations
on the devices. Moreover, Fig. 3 shows the physical connec-
tions the devices. The RPi 3b+ and laptop form an underlying
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Fig. 3. Private blockchain network (the lightning mark describes a Wi-Fi
connection; the solid arrow describes a blockchain connection).

TABLE II
CONFIGURATIONS

TABLE III
NETWORK PERFORMANCE

network for the blockchain by connecting to the same TPlink
Wi-Fi router. All the devices are in the same room. The dis-
tance between each device and the router is within 3 m. We use
iperf and ping tools to evaluate the network performance on
the testbed. More specifically, we find the TCP, UDP through-
put, and the round-trip time (RTT) of the network connection
between nodes. The results are shown in Table III. A cus-
tomized genesis file is created to launch a private Ethereum
blockchain client. Depending on the evaluation, we can set
an arbitrary value for the Difficulty in the genesis file. The
critical parameter in the private Ethereum, block gas limit, is
set to allow the blocks to contain sufficient transactions. After
successful initialization, the private Ethereum blockchain IoT
network has a linear structure indicated by the arrows in Fig. 3.

To run our experiments, we have to prepare two important
issues as follows.

First, we deploy a smart contract written in Solidity version
0.4.25 [54]. The smart contract, which simulates the IoT-
system activities, has two functions: 1) writing a string to the
blockchain and 2) reading the current string. Ethereum nor-
mally charges a sender some Ether based on gas consumption
and the transaction’s gas price. However, the nodes in a private
network suppose to share information without any restriction.
In our blockchains, the gas price is set to 0. That means the
nodes can submit transactions to write for free. The reading
function does not consume any gas either. Second, we syn-
chronize the system time on the nodes to measure the latency
on millisecond-level accuracy. We use the ntpdate utility to
synchronize the blockchain nodes’ system time. ntpdate sets
the local system time by polling the network time protocol
(NTP) servers. We selected the NTP server in Japan, which
is the closest one to the devices, and guarantee the expected
accuracy.

In the evaluations, we use the Web3.js library [55] on all
data nodes to send transactions by calling the writing function
embedded in a transaction. We preload a JavaScript file to
the mining node, enabling a mining process after receiving
a transaction. The verbosity is set to maximum in all nodes,
which allows Geth to output the most detailed information,
including all steps [i.e., in Fig. 2(a) and (b)] with a timestamp.
We record those outputs from the console to a log file and
collect them together. We then extract the timestamp of the
claimed steps for each latency type using our self-written bash
scripts. We calculate the minimum, average, and maximum
values of different latency types in each set of experiments.

B. Latency Evaluation

This section introduces the evaluation of three latencies as
described in Fig. 1, which are TOL, BOL, and block genera-
tion latency (i.e., mining time). Initially, the first two latency
parameters are measured in a baseline and a realistic scenario.
We consider both the PoW and PoA consensus mechanisms.
Note that, in the PoA case, a miner is not required, while the
blocks are generated at a fixed-interval pace by validators. We
keep the laptop as the only validator in the PoA related exper-
iments. The time interval of generating a block is 12 s, which
is similar to the expected value in the PoW case. In the later
part, we present the mining time evaluation.

1) Baseline Scenario: The baseline scenario includes the
TOL of transmitting a single transaction and the BOL of trans-
mitting an empty block. The baseline scenario discloses the
time interval of transmitting minimal workload in this pri-
vate blockchain network. Regarding the TOL, we measure the
needed period for a transaction to be transferred from each data
node (RPi 3b+) to the mining node, validator node (i.e., the
laptop) with the PoW and PoA, respectively. The minimum,
average, and maximum values of TOL are shown in Fig. 4(a),
where the x-axis shows the node number. We observe that the
TOL value increases when the number of hops to the validator
or miner increases. More specifically, the average increment
per hop for PoW and PoA is 11.52 and 10.70 ms, respectively.
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Fig. 4. Baseline scenario with PoW and PoA. (a) TOL results. (b) BOL results.

Fig. 5. Realistic scenario with PoW and PoA. (a) TOL results. (b) BOL results.

TABLE IV
BLOCK SIZE WITH DIFFERENT TRANSACTIONS

Regarding the BOL, we measure the latency when transmit-
ting an empty block from the mining node to each data node.
In both PoW and PoA cases, the experiment sets are repeated
a thousand times. The measurement results are presented in
Fig. 4(b), where again the latency increases following the num-
ber of passing hops. The PoW blockchain needs 27.31 ms per
hop on average. Meanwhile, in the PoA Ethereum network,
the average increment of BOL per-hop is 11.52 ms, which is
significantly lower than the PoW’s one.

In this evaluation, we found that a transaction’s size is
variable according to the attached information. A typical trans-
action calling the smart contract is shaped within three TCP
segments in both the PoW and PoA Ethereum networks.
The empty block only contains a block header, whose size
is about 540 bytes, as shown in Table IV. We collect
the block size information embedded in the block header
using the Geth client with the Web3.js library. More specif-
ically, we call the method “eth.getBlock(block_number).size”
and “eth.getBlock(block_number).transactions.length” of each
block. We then calculate the size of blocks with different

numbers of transactions inside. An empty block is trans-
mitted by using four TCP segments in both algorithms.
While, as we observed, both algorithms share the same func-
tionality for transaction processing with txpool. Thus, both
algorithms propagate transactions with similar TOL. However,
two consensus algorithms (i.e., Ethash2 for the PoW Ethereum
network and Clique3 for the PoA Ethereum network) have
different processes for block verification. The PoA Ethereum
network has more simple actions than PoW. For example, the
PoA Ethereum network does not need to check uncle blocks
or calculate difficulty value. Consequently, the PoA Ethereum
network accepts blocks quicker than PoW for empty blocks
and for the following realistic scenario.

2) Realistic Scenario: In this evaluation, we add more
workloads to simulate latency in a realistic scenario. For the
TOL, two workloads of sending 10 and 100 transactions at
once have been investigated. We consider three cases of send-
ing blocks containing 1, 10, and 100 transactions for the
BOL. A group of transactions is propagated to the mining
node through a different number of hops in the former. In the
latter, the mining node (or validator) generates blocks con-
taining propagated transactions, traverse to the data nodes in
a multihop manner. Each experiment is repeated a thousand
times. The evaluation results in the real scenario are shown in
Fig. 5.

2consensus/ethash/consensus.go
3consensus/clique/clique.go
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TABLE V
PARAMETERS OF LINEAR MODEL IN RPI-BASED NETWORK

Fig. 5(a) shows the TOL results with different workloads
in the blockchain using PoW and PoA. Obviously, each
blockchain node takes more time when processing more trans-
actions in comparison to the baseline scenario. For both work-
loads, the TOL values approximately have a linear increase
along with the number of hops. In transmitting 100 transac-
tions, the TOL of PoW takes 308.22 ms for the one-hop case.
After that, the TOL increases 83.92 ms for each additional hop.
On the other hand, the PoA’s average TOL is about 310.93 ms
for the first hop. Moreover, the increasing gap between each
hop is approximately 83.18 ms. Hence, we can conclude that
the TOL values of PoA and PoW are on the same level, indicat-
ing that the consensus algorithm does not significantly impact
the transaction transmission process. Additionally, the trans-
actions’ transmission between nodes is continuous. They are
hence transferred to the next hop without waiting for all trans-
actions to be received. However, the latency of transferring 10
or 100 transactions is not ten or a 100 times comparing to the
baseline.

Fig. 5(b) presents the BOL of the blockchain with PoW,
PoA under the varying workloads of 1, 10, and 100 transac-
tions in each block. Each workload results in a different value
of block size (in bytes). The relationship of the size and trans-
action number is shown in Table IV. With the PoW and PoA
algorithms, similar to the baseline scenario, the BOL values
are proportional to the number of hops from a transmitting
node to the miner. With the largest block size (i.e., the block
with 100 transactions), the PoW blockchain on average needs
59.96 ms for the first-hop transmission and increases 48.02 ms
per hop. However, the PoA Ethereum network takes 73.54 ms
for transmitting the same block for the first hop and increases
32.11 ms at each later hop on average. The results also indi-
cate that the PoA Ethereum network propagates blocks quicker
than the PoW (i.e., smaller BOL values).

To find the parameters in (2) for each scenario with the
RPi-based network, we fit our measured average values to
the linear model. The results are shown in Table V, in
which each scenario has been abbreviated following the for-
mat Latency metrics (TOL or BOL)_consensus mechanism
(PoW or PoA)_number of involved transactions. For exam-
ple, TOL_PoW_1 represents transferring a single transaction
with PoW, whereas BOL_PoA_0 refers to propagating blocks

containing zero transactions with PoA. We can see that the
transactions with both PoW and PoA have similar Th and Tm

values. The block propagation with PoW has negative values
of Tm in RPi-based and the later emulated networks. It signifies
that the first hop of block propagation with PoW is faster than
subsequent steps. The reason is the PoW consensus algorithm
requires a miner to share their most recent mining results with
other miners to avoid forking.4 Because the mining feature is
activated on all nodes, node1 informs node2 quicker than other
block propagation steps.

3) Block Mining Time: We operate the mining function
with the original and a modified Geth version on the laptop
and a server in the block mining time evaluation. The origi-
nal client evaluates the difficulty variation, while the modified
version is for the case of fixed difficulty value, by which we
can customize the expected mining time. During the mining
process, the client records the timestamp when each block is
generated. In total, we let the client mine 10 000 blocks and
collect the timestamp values for the mining time calculation
(i.e., the timestamp difference between the previous block and
itself). We also track the difficulty value of each block. All
tasks have been done with a script accessing the blockchain
via the interprocess communication (IPC).

The evaluation results with the original Geth are shown in
Fig. 6. We can see the adjustment of the difficulty value and
the mining time on the laptop and a server in Fig. 6(a) and (c),
respectively. The left y-axis shows the mining time in each fig-
ure, while the right y-axis indicates the difficulty. Note that the
difficulty keeps increasing on both machines along with the
block number (until around the 4000th blocks), considering
the initial difficulty value preset in the genesis file is low for
the computing power of two devices. Ethereum continuously
adjusts the difficulty value until it reaches a balanced value
matching the total computational power. In the experiments,
we can observe that after mining about 5000 blocks, the diffi-
culty value becomes quite stable. We then take a deeper look
into the block mining time in that case. The raw measurement
values have big variations and are difficult to evaluate. We take
the curve fitting method to exploit the exponential distribution
of the mining time in the two machines. The probability of
each mining time collected from the last 5000 mining blocks is
fitted using a Python optimization package.5 The fitted results
on the laptop and server are presented in Fig. 6(b) and (c). As
revealed in the figures, the mining time follows the exponential
distribution. Moreover, the fitted equations are derived as in (5)
(laptop), (6) (server). From that, we can have the expected
mining time of the laptop is 11.89 s. Meanwhile, the value of
the server is 11.76 s. Ethereum ultimately regulates the mining
time to the same level on devices with different computational
power. The difficulty values are adjusted to a balanced value
after a sufficient number of blocks, adapting to the devices’
computational power. The device with a higher computational
power has a higher balanced difficulty value. Consequently, the
mining time shows an exponential distribution with distinctive

4consensus/ethash/sealer.go
5scipy.optimize package in Python3.8
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Fig. 6. Evaluation results with original Geth. (a) Mining time and difficulty variation on the laptop. (b) Probability of each mining time and fitted curve of
the last 5000 blocks in (a). (c) Mining time and difficulty variation on the server. (d) Probability of each mining time and fitted curve of the last 5000 blocks
in (c).

difficulty values on both devices

f1(x) = 0.0818e−0.0829x + 0.0005 (5)

f2(x) = 0.0816−0.0832x + 0.0006. (6)

In the following, we show the evaluation with the modi-
fied version of Geth. In Ethereum, we can customize the Geth
client in a private blockchain network, for example, disabling
or modifying the adjustment function.6 This evaluation uses
the modified Geth to mine blocks with fixed difficulty values
on the laptop. Referring to the balanced value in Fig. 6(a),
we evaluate two fixed values of difficulty (i.e., 3 × 106 and
6×106), each with 5000 mined blocks. The measurement val-
ues of mining time for each fixed value are shown in Fig. 7(a)
and (c). We use the same method to get the fitted curves as
in Fig. 7(b) and (d) for the difficulty of 3 × 106 and 6 × 106.
Moreover, we derive the equations for two scenarios in (7)
and (8), which lead to the expected mining time of 9.73 and
23.20 s, respectively. We can conclude the mining time also
follows the exponential distribution with the fixed difficulty
value. The client with fixed 3 × 106 difficulty leads to a simi-
lar expected mining time with the original Geth client, which
proves the adjustment mechanism can keep the difficulty in
balance. Moreover, the client with the difficulty of 6×106 has
an approximately double mining time than the 3 × 106 client.
Thus, we can customize the expected mining time referring to

6func (ethhash *Ethash) CalcDifficulty.

the adapted balanced difficulty value

f3(x) = 0.959e−0.0993x + 0.0008 (7)

f4(x) = 0.431e−0.0431x + 0.0001. (8)

C. Latency Evaluation on Emulated Network

This section shows our evaluation of BOL and TOL on a
large-scale network, aiming to indicate the size of an actual
IoT blockchain application. We have deployed a network with
30 nodes on the emulator named Mininet-WiFi [56] on a
powerful Dell server. Mininet-WiFi is an open-source emu-
lation platform that allows replicating and emulating wireless
network environments (e.g., wireless devices, access points,
many versions of IEEE 802.11). In our deployed wireless
network, all the nodes connect to an access point using IEEE
802.11g as in Fig. 8. The RTT between any two different nodes
is about 5 ms, while the bandwidth is set at 10 Mb/s. We then
build a private blockchain on top of the wireless networks with
30 nodes in a linear topology. Transactions and blocks are
produced in Node 1 and propagated to the other nodes within
29 hops. We implement the same PoW and PoA as in the
previous measurement. Furthermore, on Ethereum Mainnet,
a typical block contains about 400 transactions.7 Hence, we
investigate more sufficient workloads of 200, 300, 400, and
500 transactions to capture actual situations. It should be noted
that the default gas limitation in the private Ethereum network
is 8 000 000. A standard transfer transaction requires 21 000

7https://etherscan.io/
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Fig. 7. Evaluation results with modified Geth. (a) Mining time with fixed 3 × 106 difficulty. (b) Probability of each mining time and fitted curve of 5000
blocks in (a). (c) Mining time with fixed 6 × 106 difficulty. (d) Probability of each mining time and fitted curve of 5000 blocks in (c).

Fig. 8. Topology of private blockchain network in Mininet-WiFi emulation.

units of gas, whereas a transaction calling a smart contract
may consume more depending on its complexity. Therefore,
to run the investigation properly, we need to expand the default
gas limitation with –miner.gaslimit(gas_limitation) command
when starting the Geth client for a larger transaction capa-
bility. We investigate the TOL and BOL with all different
workloads in the same method. The results in baseline and
realistic scenarios are reported below.

1) Baseline Scenario: In this scenario, Node 1 executes the
consensus algorithms to generate new blocks. The node then
disseminates single transactions and empty blocks to other
nodes. Each experiment is repeated 100 times. The minimum,
average, and maximum values of TOL and BOL are shown
in Fig. 9, where the x-axes indicate the increment of hops.
Fig. 9(a) shows that the TOL value strictly increases with the
number of hops with both PoW and PoA. On average, the
latency gain per hop is 9.86 and 9.82 ms, respectively. Hence,
the single transaction transmission latency in the emulated
network is close to the one in the real network reported in the

previous section. Regarding BOL, we can observe in Fig. 9(b)
that the BOL value increases following the number of hops.
In the case of PoW, each hop consumes 16.96 ms on aver-
age, while PoA requires 10.07 ms per hop on average. Similar
to the actual network, the empty blocks are also propagated
quicker with PoA than with PoW. Besides, the BOL of empty
blocks with PoA in the emulated network is similar to the
actual implementation. On the other hand, the BOL values
with PoW in the emulated network are shorter. That is, because
the block generation in the PoW algorithm requires more pro-
cessing procedures than the PoA algorithm. Moreover, the
server, which hosts the emulation, is much more powerful than
the miner in the actual network.

2) Realistic Scenario: In this scenario, we inherit the traffic
pattern from the previous evaluation in the actual network. The
TOL evaluation will be investigated under the conditions of
10, 100 transactions being transferred at once. In the case of
BOL evaluation, we have added different numbers [i.e., (1, 10,
and 100) and (200, 300, 400, and 500)] of transactions inside
of a block. The results are shown in Figs. 10 and 11.

Fig. 10(a) presents the TOL results with different workloads
in the emulated network with PoW and PoA. Compared to the
actual implementation, the emulated network’s TOL shows a
more strict linear increment along with the number of hops.
More specifically, in the PoW and PoA networks, transferring
ten transactions consumes approximately 11.79 and 11.85 ms,
while transporting 100 transactions takes 28.85 and 27.49 ms,
respectively. We can say that both networks have a similar
level of latency when transferring transactions. Moreover,
since the emulation provides a better network environment,
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Fig. 9. Baseline scenario with PoW and PoA in Mininet-WiFi emulation. (a) TOL results. (b) BOL results.

Fig. 10. Realistic scenario with PoW and PoA in Mininet-WiFi emulation. (a) TOL results. (b) BOL results.

Fig. 11. Realistic scenario with sufficient workloads in Mininet-WiFi emulation. (a) TOL results. (b) BOL results.

the emulated network’s TOL is lower than the actual
one.

Fig. 10(b) shows the BOL results in the emulated network
with PoW, PoA when the workload varies (i.e., 1, 10, and 100
transactions). In this evaluation, we use the same Ethereum
blockchain, the block sizes are similar to those in the actual
network. With the PoW algorithm, the transferring blocks with
1, 10, and 100 transactions inside consume 17.74, 18.68, and
31.09 ms per hop, respectively. While, with the PoA algo-
rithm, the BOL per hop results are 10.13, 10.49, and 18.21 ms,
respectively. Additionally, we can observe that blocks with
plenty of transactions inside need about 1 s to be disseminated

to 29 hops. The emulation results show that the blockchain
network will produce significant propagation latency when dis-
seminating the information via a large number of hops, leading
the blockchain under many risks, such as forks. Therefore,
reducing the longest message transmission path is necessary
for large-scale blockchain networks.

Fig. 11(a) and (b) show TOL and BOL results for the large
workload of 200, 300, 400, and 500 transactions. Those results
follow the same tendency as our earlier measurements. As we
can observe, dispersing 200 transactions to 24 hops or 500
transactions to 12 hops approximately results in a TOL of
1 s. In terms of the BOL values, the blocks containing 200
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TABLE VI
PARAMETERS OF LINEAR MODEL IN EMULATED NETWORK

transactions take more than 1 s to propagate across 24 hops,
and blocks with 500 transactions take over 2 s to be propagated
over 30 hops. A node requires approximately half a second
to receive 500 transactions. Packing 500 transactions into a
block takes 72 and 45 ms in our blockchain with PoW and
PoA, respectively. These latency results expose that the propa-
gation latency is significant when transferring huge workloads,
emphasizing the need to create appropriate network topologies
and lowering propagation latency in blockchain networks.

Regarding the values in the linear model in (2), we adopted
the same method as the RPi-based network for the emulated
networks’ evaluation. The fitted results of Th and Tm are shown
in Table VI. We can find all the parameters in all the 30 sce-
narios (15 for BOL and 15 for TOL). Moreover, we have the
same observation as in the previous fitting evaluation. Th and
Tm of TOL scenarios are similar in PoW and PoA networks.
In the case of BOL, the blockchain with PoA has a lower Th

than the one with PoW (i.e., which implies that blocks are
transferred faster with PoA).

VI. CONCLUSION AND FUTURE WORK

This article aimed to understand the latency of the private
Ethereum IoT network using the PoW and PoA consensus
algorithms. First, we have defined three steps according to
the transaction lifecycle (i.e., TOL, block generation time,
and BOL) and their measurement methodology. We showed
the increment of TOL and BOL with both consensus algo-
rithms in the baseline and realistic scenarios. The results gave
us an observation of the latencies’ relationship in an actual

deployment and emulated large-scale network. The change of
consensus algorithms does not influence the TOL much, while
it affects the BOL. The PoA Ethereum network has a lower
BOL than the PoW one due to a simpler block verification pro-
cess. Moreover, we investigated the PoW algorithm’s impact
on the adjustment of the difficulty value, which then influ-
ences the mining time. Our measurement results and fitting
method showed that the mining time follows the exponential
distribution when the difficulty is both fixed or stable. With
this work’s findings, we can thoroughly and correctly under-
stand each latency component from one end to another from
a practical perspective. Besides performance benchmarking,
we may fastly identify a possible bottleneck or pattern in the
IoT-blockchain system and provide appropriate solutions.

In the future, we plan to investigate the latency components
when the transaction generation follows a probabilistic dis-
tribution. Moreover, we will evaluate the effect of different
network topologies on the BOL and TOL performance.
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