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Figure 1: Our visual analytical system facilitating a multi-model analysis of dynamic blockchain networks. It includes the (a)
timeline: a histogram displaying transaction volume over a period; (b) topological view: a force-directed graph demonstrating
network structures; (c) classification view: prediction results based on several feature extraction methods; (d) 2-D projection
view: 2-D projections of sample embeddings; (e) detailed information view: detailed transaction information of a node; (f)
feature distribution view: a parallel coordinate plot showing samples’ features.
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ABSTRACT
The phishing scam is a major kind of fraudulence in blockchain.
And it has become an urgent issue to discern and prevent the fraud-
ulent behaviors. However, the large-scale and dynamic nature of
transaction network imposes great challenges on the identification
and analysis. While there have been many sophisticated machine
learning approaches providing predictive capability in terms of de-
tecting such cases, they usually offer little insight into the essence
of those behaviors and the occasion when phishing scam activ-
ities happen. Motivated by these shortcomings and bottlenecks,
this paper proposes a suite of visual analytical methods for inter-
pretable and explorable fraudulence identification in large-scale
blockchain transaction networks, incorporating an anomaly detec-
tion model based on multiple feature extraction manners. In this
paper, we adopt two types of graph embedding methods and vari-
able derivation to generate features from transaction data. Then
we use machine learning classification approaches to fit the three
sets of features. Evaluations show that all kinds of features perform
well in classification. Besides, we design an interactive visualiza-
tion system displaying the transaction networks and classification
models, which allows users better explore the data and understand
the models. Furthermore, we demonstrate two cases through the
visualization system to unearth fraudulent patterns and interpret
classification results. Finally, we close with discussions for further
improvements of our models and system.
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1 INTRODUCTION
Recent years has witnessed a surge of interest in blockchain tech-
nology especially thanks to the popularity of the cryptocurrency
Bitcoin [21]. Blockchain acts as an open ledger that stores transac-
tion records in a decentralized, persistent and anonymous way [22]
and has offered promising application prospects such as product
traceability and anti-counterfeiting [10]. This trend, however, is
also matched with an increasing number of security incidents on
blockchain, including digital currency scams and hacking attacks.
Among these incidents, phishing scams have been cited as the main
threat to the security blockchain ecosystem [20]. With phishing
scams causing significant financial losses on blockchain [4], it has
become crucial to devise methods to identify them on blockchain.

The temporal, high-frequency nature of the blockchain trans-
actions as well as the topological complexities of blockchain net-
works, make the fraudulence identification a technically challeng-
ing task. Thus there has been a growing interest in deep learning
approaches [12, 18] in the past decade. More specifically, graph
neural networks (GNNs) [17] have attracted attention. However,

they usually fail to offer explanations referring to node features
or transaction patterns indicating fraudulent behavior. As a result,
although various machine learning methods are competent in clas-
sification, they are limited in terms of diagnostic and descriptive
capabilities and offer limited insight into understanding and ex-
ploring the characteristics and time-varying transaction patterns
of phishing nodes in a blockchain network.

To address those challenges, we design an interactive system
providing multiple and complementary representations of block-
hain networks, and a suite of visual analytical methods for the
informative analytics of fraudulent behaviors among large-volume
transaction data. In our approach, GNNs and variable derivation
are utilized to generate several features of each node. To investigate
nodes’ relationships, we provide a force-directed graph to display
transaction information in a topological space. To demonstrate the
impact of different features on label prediction, we provide a classi-
fication view. We also use parallel coordinate plots to explore the
transaction characteristics. To examine the evolution of transac-
tions of a node, we provide a local network view to explore the
time-varying characteristics of the selected nodes as well as a time-
line to display and select time span for analysis. Our approaches
offer dynamic network visualization methods for analysts to ex-
amine explicit and implicit information of the blockchain network
from multiple perspectives concurrently.

We evaluate our approach on a data set emerging from a blockchain
network with known phishing activities. We provide two case stud-
ies to demonstrate the efficacy of our approach in supporting phish-
ing activity detection and analytics. Using our visual analytical
approach, we identified several behaviors and features that charac-
terise fraudulent blockchain activity.

The key contributions of this paper are as below:
• Comparison of multiple models in anomaly detection
in the blockchain network through a comprehensive com-
bination of Graphical Neural Network feature space, graph
topology and dynamic network representation,

• A visual approach for the multi-perspective analytics
of dynamic networks through a visual analytical system
that supports the exploration of phishing node networks by
providing interpretable visualizations of transaction patterns
and behaviors.

• Two real-world data case studies demonstrating how our
visual analytical approach could facilitate the identification
and characterization of fraudulent behaviors on blockchain
transaction networks.

2 RELATEDWORK
2.1 Graph Data Mining
Matrix networks usually perform well in dense graphs mining[6, 8].
There are also hybrid approaches such as NodeTrix [5] that com-
bine connectivity graphs and matrices. Pienta et al. [15] proposed
a feature-based method to query a large graph from local neighbor-
hoods of interest to the user. Heer and Boyd [3, 7] proposed a top-
down strategy through which analysts can first have an overview
of the network and then filter or query to reach local information
from the network. In contrast, Moscovich et al. [13] proposed a
bottom-up strategy, which requests to get local details first and then
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analyzes larger networks through corresponding nodes and edges
of interest. Both strategies allow analysts to navigate between over-
all networks and local nodes to get both structural and informative
details of the network.

2.2 Anomaly Detection
There has been a growth in security incidents in the blockchain
space, including DeFi security is front, phishing incidents, ransom
incidents and digital wallet security incidents. Data scientists have
explored various approaches to examine these anomalies. Signorini
et al. [16] proposed BAD (blockchain anomaly detection) which
leverages the features of blockchain to provide an anomaly detec-
tion service and protect the peers in a blockchain network against
eclipse attacks. Micha and Kamil [14] apply three supervised learn-
ing techniques, Random Forest, Support Vector Machine and XG-
Boost, to detect fraudulent accounts on the Ethereum blockchain.
Damiano et al. [11] analyzed the outliers of Bitcoin user graph in de-
gree distribution and found that these outliers of degree distribution
are generated by artificial chains of transaction.

2.3 Blockchain Visual Analytics
The transactions based on blockchain are gowing rapidly in informa-
tion capacity and effectively visualizing the transaction information
has become imminent. Kinkeldey et al. [9] designed an actor-centric
view of transactions, where non-technical experts can categorize
participants through a workflow based on multiple activity indi-
cators. Dan et al. [2] used force guide graph visualization to help
accelerate the exploration of large-scale Bitcoin transaction data
and provide collaborative models to detect unexpected but frequent
transaction patterns, such as money laundering. Michele et al. [19]
proposed a modular framework for parsing Bitcoin blockchain,
which clusters addresses that may belong to the same entity, classi-
fies and marks this entity and visualizes the complex information
extracted from the Bitcoin network.

3 OVERVIEW
3.1 Data Description
The data was crawled from Etherscan [1]. There are 4,161,444 trans-
action records and 944,705 nodes, 3,360 labeled and 941,345 unla-
beled. The labeled nodes consist of 1,660 phishing and 1,700 non-
phishing (legitimate) nodes. Each node is represented by an address,
identification for a specific Ethereum account. Each transaction con-
tains following six variables:

Table 1: Variables of transactions and their meanings

Variable Type Meaning
TxHash string Hash value of the transaction
BlockHeight integer height of block cotaining the

transaction
TimeStamp integer timestamp of the transaction
From string address of the transaction

launcher
To string address of the transaction re-

ceiver
Value float transaction amount

Our approach will focus on the last four variables. We examine
the relationships between transaction node addresses, weighing
bias of transaction timestamp and transaction amount.

3.2 Analysis Tasks
There are various models for fraudulence detection. But the explo-
ration for misclassification and dynamic methods to interpret their
behavioral patterns are still inadequate. Therefore, we propose a
visual analysis framework to address the following tasks:

T1: Temporal analysis. The data used in our work are transac-
tion data, and the most conspicuous feature of such kind is large-
volume. For a more efficient exploration of the node network, we
need to control the volume of data in time domain. This can not
only help us to enhance the front-end stability and management
of data content, but also to analyze the evolution of the phishing
nodes’ transaction network dynamically in the time dimension.

T2: Transaction pattern analysis. Reading the literature re-
veals that from the regulator’s perspective, it is important to iden-
tify fraudulent accounts, but it is equally important to determine
whether an account directly or indirectly associated with a fraudu-
lent account is a also fraudulent account. Therefore it is crucial to
explore nodes’ transaction pattern, or namely, structural character-
istics in transaction network. On the one hand it can provide some
insight to determine whether a node is a phishing node or not, and
on the other hand it can show the fraudulent pattern of the node
to some extent.

T3: Trace for fundflows. In real-world transactions, once fraud
occurs, as is important to sanction fraudulent individuals in a timely
manner. it is also necessary to monitor the flow of funds. This not
only helps us to identify the associated accounts of the phishing
node, but also provides the possibility to recover the lost funds.
Therefore, the ability to trace the flow of funds is very essential.

3.3 Design Requirements
To accomplish the goals and analytical tasks discussed before, we
summarize our four main design requirements as below (R1, R2
and R3 correspond to T1, T2 and T3 discussed above):

R1: Interactive temporal analysis and linked views. To effi-
ciently control the data volume and explore the transaction data
in time domain, there need to be a key view where we can conve-
niently select any time interval. The interrelationships between this
view and others will be also necessary. Once we select a time inter-
val, data displaying in other views must be updated subsequently
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for a coherent demonstration. Furthermore, this view may depict
an overview of the transaction data within the selected interval.

R2: Topological representation of transaction network in
global and local perspectives. The transaction pattern of an
account means how the account owner makes transactions with
others. This corresponds to topological structure of a node in the
transaction network. Visualizing the network makes it easier and
plainer to observe a node’s neighbors and their interactions so that
users can infer a node’s label from this information. Two different
scales of perspective will fulfill us both to seize an overview of the
whole transaction network and check a node’s topological structure
more thoroughly.

R3: Query and display for detailed information. To trace
the flow of a fund, it is necessary to obtain the detailed information
of transactions itself and the two subjects of a transaction. There-
fore, we need a query and browse tool for detailed information of
nodes and transactions. After accessing the interested data, it is
also helpful to efficiently display and visualize it in order to have a
clear and straightforward grasp of the needed information.

4 DATA PROCESSING AND MODELING
Three data processing methods are taken to extract the structural
and transactional features of nodes and to perform the node classi-
fying mission. In this section, we will introduce them and compare
their discriminative capacity.

4.1 Feature Derivation
In Blockchain transactions, every transaction contains two pieces
of important information: timestamp and value. To explore the
difference between phishing nodes and normal nodes, we use infor-
mation from the two features to generate some new features. The
derived features are shown in the following table:

Table 2: Derived variables and their meanings

Variable Type Meaning
node string node address
label string node class
fromDegree integer how many people it has trans-

acted with as the initiator
outDegree integer how many people it has trans-

acted with as the receiver
outValue float cumulative transfer-out

amount
inValue float cumulative transfer-in

amount
asFromTransCountinteger cumulative number of transac-

tions as the initiator
asToTransCount integer cumulative number of transac-

tions as the receiver
frequency float (Last transaction time - First

transaction time) / Total num-
ber of transactions

aveInValue float average transfer-in amount
aveOutValue float average transfer-out amount

4.2 GNN methods
In our approach, GNNs are used to generate the embedding of
nodes. The encoded vectors capture structural characteristics of
the graph in a high-dimensional format, thus can be employed as
the features to build predictive machine learning models.

The embedding method in our paper is node2vec, a biased ran-
dom walk to obtain the neighbor sequence of a vertex. Given the
current vertex 𝑣 , the probability of visiting the next vertex 𝑥 is:

P (𝑐𝑖 = 𝑥 |𝑐𝑖−1 = 𝑢) =
{
𝜋𝑢𝑥
𝑧 if (𝑢, 𝑥) ∈ 𝐸

0 otherwise
(1)

𝜋𝑢𝑥 is the unnormalized transfer probability between vertex 𝑢
and vertex 𝑥 . 𝑧 is the normalized constant.

node2vec controls the random walk strategy through two hy-
perparameters - 𝑝 and 𝑞. Suppose that the current random walk
arrives at vertex 𝑢 through edge (𝑡,𝑢). We set 𝜋𝑢𝑥 = 𝛼𝑡𝑥 ·𝑤𝑢𝑥 ,𝑤𝑢𝑥

as the edge between vertex 𝑢 and 𝑥 :

𝛼𝑡𝑥 =


1
𝑝 if𝑑𝑡𝑥 = 0
1 if𝑑𝑡𝑥 = 1
1
𝑞 if𝑑𝑡𝑥 = 2

(2)

𝑑𝑡𝑥 is the shortest path distance between 𝑡 and 𝑥 . Parameter 𝑝 is
a return parameter that controls the probability of returning to the
source node 𝑡 . Parameter 𝑞 is an in-out parameter that controls the
probability of going away from the source node 𝑡 .

Referring to Wu et al. [20], we define 𝑃𝐴𝑢𝑥 as the transition
probability from𝑢 to a neighbor 𝑥 based on the transaction amount:

𝑃𝐴𝑢𝑥 =
𝐴(𝑢, 𝑥)∑

𝑥 ′∈𝑉𝑢 𝐴(𝑢, 𝑥 ′)
(3)

𝐴(𝑢, 𝑥) denotes the total amount of transaction value between 𝑢
and 𝑥 . 𝑉𝑢 represents the set of nodes directly connected to 𝑢.

Meanwhile, we define 𝑃𝑇𝑢𝑥 as the transition probability based
on transaction time:

𝑃𝑇𝑢𝑥 =
𝑇 (𝑢, 𝑥)∑

𝑥 ′∈𝑉𝑢 𝑇 (𝑢, 𝑥 ′)
(4)

𝑇 (𝑢, 𝑥) denotes the timestamp of the last transaction between 𝑢
and 𝑥 , 𝑉𝑢 represents the set of nodes directly connected to 𝑢.

In order to take both transaction time and transaction amount
into account, a parameter 𝛼 is used to balance their effects and a
product act as the edge weight𝑤𝑢𝑥 :

𝑤𝑢𝑥 = 𝑃𝐴𝛼
𝑢𝑥 · 𝑃𝑇 1−𝛼

𝑢𝑥 (5)
Then the transition probability from 𝑢 to 𝑥 can be derived as :

𝜋𝑢𝑥 = 𝛼𝑡𝑥 · 𝑃𝐴𝛼
𝑢𝑥 · 𝑃𝑇 1−𝛼

𝑢𝑥 (6)
After performing the biased random walk, we obtain node se-

quences. Then we use skipgram to learn the embeddings.
In our case, we set 𝛼 = 0.5, 𝑝 = 0.25, 𝑑 = 64, 𝑟 = 20, 𝑙 = 5,

and 𝑘 = 10. Then we get a 64-character embedding. When we
disregard the weights of edges and consider only the connection
relations between nodes, another embedding can be obstained. The
weighted and unweighted node2vec methods are denoted as GNN
and GNNWUF respectively.
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In order to test whether node2vec along with variable derivation
can identify nodes’ characteristics, we utilize them to gain the fea-
tures and then perform classification. The ROC results of different
models are shown in the following table:

Table 3: ROC of each classification method

Logistic regression SVM
GNN 0.95 0.97
GNNWUF 0.94 0.96
Derived variables 0.94 0.93

5 VISUALIZATION SYSTEM
After data modeling and processing, we get the several sets of
features generated by transaction data. In this section, we will use
this information to design a visual analytic framework.

The whole framework of our visualization system consists of
7 views: (1) timeline; (2) topological view; (3) classification view;
(4) 2-D projection view; (5) detailed information view (6) feature
distribution view (7) node transaction network view (Fig.1)

5.1 Timeline
The timeline (Fig.1 a) plays a vital role in the whole design because
it provides interactions in terms of time and acts as the prerequi-
site for several other views’ generations. Above the time axis is
a bicolor histogram showing the volume of transactions during a
specific period. The height of blue area represents the total amount
of transactions at this timestamp in reference to the left y-axis. The
height of orange area figures out the transaction amount involv-
ing phishing nodes, with the right y-axis for reference. We take a
logarithm for transaction volume to obtain an easier view.

The timeline facilitates us to observe the amount of transactions
at each timestamp, and demonstrates when the phishing nodes
show up for fraudulence detection and exploration. Besides, we can
use it to decide how many transactions for display. Users can brush
the time axis to select a specific time interval, and the data in it will
be transferred to the topological view and classification view.

5.2 Topological View
In order to observe global transaction relationships, we visualize
a topological space to demonstrate the network information. A
force-directed graph is utilized for our topological view (Fig.1 b).
The features of our force-directed graph are listed as following:

• A Node represents an address.
• The color of a node represents the node type: orange for
fraudulent, blue for normal and yellow for unknown.

• The edge between two nodes indicates that they conduct
transaction at least once with each other in the time range.

Several interactive functions are incorporated. First, the user can
drag to draw a specific area on the graph to zoom in. Information
in other views will also be updated according to the selected nodes.
Another function is click. If the user clicks on a specific node, the
local transaction network involving this node will be highlighted.
In addition, when hovering on a node, its address will be displayed.

With all the features and functions, the topological view provides
an interactive and dynamic interface for users to examine the global
and local information of the blockchain transaction network.

5.3 Classification View
In data processing andmodeling, three sets of features are generated
by GNN, GNNWUF and variable derivation and adopted for label
prediction. In the classification view (Fig.1 c), we can have a plain
sight of the prediction results and the true label of nodes.

The prediction results are demonstrated by three sectors around
each node in this view. The colors of the top-right, top-left and
bottom sectors of each node respectively represent the prediction
results using features generated by GNN, GNNWUF and derived
variavles, orange for fraudulent and blue for normal. And the color
in the center of each node represents its true label.

Nodes are staggered into four rows from top to bottom. The first
row represents that all three feature generation methods lead to
correct prediction results. The second and third rows respectively
indicates two and one methods give rise to right predictions for
this node. And the last row consists of the nodes whose true label
is inconsistent with all the predictions induced by three methods.

In terms of interactive function, one can click on a node. Then
the corresponding node in other views will receive a concentration
effect. For instance, the node in 2-D projection view will be circled
and the area around it in topological view will be enlarged. More
parts of the interactions between the classification view and other
views will be illustrated below.

5.4 2-D Projection View
The 2-D projection view (Fig.1 d) includes 2-D points projected
from high-dimensional vectors produced by GNN, GNNWUF and
variable derivation, using t-SNE algorithm. t-SNE is a nonlinear
dimension reduction algorithm, and the basic idea is that that are
similar points in high-dimensional space are mapped to be similar
in low-dimensional space as well. As can be seen from the figure,
the feature projections are roughly divided by the color in each sub-
view, conceivably showing the features’ capacity in classification.

5.5 Detailed Information View
The detailed information view (Fig.1 e) enables users to have a better
grasp of the phishing nodes’ features and actions by providing both
thorough data and plain visualization for the account state.

This view can be divided into two parts. The left part is an
account information query and display window. Users can attain a
general understanding of a node’s transaction information through
this window. At the top is an input box to enter an address. Clicking
on the search button, the information in display includes the time
span, cumulative amount launched, cumulative amount received,
account balance and number of transactions.

The right part shows the receiver of the transaction. Bars above
and below the horizontal line represent the transfer-in and transfer-
out cash flow. Each column denotes one day by default. The height
of each bar indicates the volume of the transaction, and the color
symbolizes the label of the transaction receiver. When hovering
on a bar, the address of the transaction receiver will be shown.
Furthermore, that address will be assigned to the clipboard once
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clicking on the bar. From this view we can trace the flow of funds
and it also helps us to detect phishing nodes.

5.6 Feature Distribution View
The feature distribution view (Fig.1 f) is a parallel coordinate dia-
gram. It shows the distribution of the normal and phishing nodes’
derived variables after median depolarization. Each axis represents
a feature and each consecutive line from left to right denotes a
node. From this view, we can see what kind of characteristics the
distribution of each feature has for fraudulent and normal nodes.
For example, the total and average transfer-in amount of phishing
nodes are lower compared to non-phishing nodes.

When we click on a node in the classification view, the line
corresponding to that node will be highlighted as a bold purple
line. Consequently, we may get an understanding of the mechanism
of why it is misclassified or correctly classified by observing and
comparing the feature distribution.

5.7 Node Transaction Network View
The node transaction network view (Fig.5) demonstrates the second-
order transaction network of a selected node. After clicking on
the node we are concerned about in the classification view, the
front-end page will send a request to the database to retrieve the
second-order transaction network data that exists in the transaction
time span of the node and then utilize the data for plotting. The
view will show up as a pop-up window where we can observe the
dynamic transaction process of the node by dragging the progress
bar at the top of the window to select a different time range.

The view is designed to help us better discover the temporal
characteristics of node transactions and gain some insight into
fraudulent transactions from the transaction network’s evolution.

6 CASE STUDY
In this section, we present two case analyses based on real-world
data from Etherscan and demonstrate how our system can provide
visual analytical patterns for a blockchain transaction network.
Each of our explorations starts with a brush for a selected time
interval in the timeline.

Case 1: Transaction Network Overview and Trace
for Fund Flow
In this case, the time interval from November 2017 to December
2017 is chosen. As can be seen from the timeline, there is a large
scale of transactions involving phishing nodes over this period,
while the total transaction volume is still within a manageable
range.

First, we will have an overview of the initial topological view
(Fig.2), from which we can find some nodes surrounded by a large
number of other nodes. Exploring the other spiky regions of the
timeline, we find that such super nodes are basically present in
regions with high transaction volumes. In order to unearth the
label of those special nodes, we consulted with experts and scholars
in the field, who explained that there are two types of nodes that
exhibit the characteristics of large transactions with multiple nodes.
One of the types is ICO (Initial Coin Offering) nodes. They will

Figure 2: Topological view from November to December in
2017. There are some super nodes surrounded by lots of
nodes, and such nodes basically are label-unknown. These
nodes tend to belong to ICO or exchange nodes.

raise a large amount of money during the initial token issuance, at-
tracting many transactions. Additionally, this kind of nodes possess
an obvious feature that they will make a lot of high-volume trans-
actions in a short period, and never appear again. The other type is
the transaction intermediary. They usually belong to an exchange
and are used to transfer funds between different exchanges.

Hiding the unlabeled nodes, we observe that many phishing
nodes are in the same community and are second-orderly con-
nected through an intermediate node. From this phenomenon, it
can be discerned that there is a collaborative fraudulent relationship
among the phishing nodes.

In the classification view, we randomly choose a phishing node
from the second row, whose address is 0x66a6892477f9b48ed47f407
b30dde754405e1910 (Node A). Its label is correctly predicted by
two feature extraction methods. After clicking, its second-order
transaction network is displayed as a pop-up window. We can find
a lot of phishing nodes in the local network, which proves the
relationship of collaborative fraudulence.

Figure 3: Detailed transaction information of a phishing node.
It receives many small-volume transactions and launches a
few large-volume transactions.

From the detailed information view (Fig.3), the selected phish-
ing node made many small-volume transactions as the receiver,
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while the transactions launched by Node A were less but with
larger value. Moreover, We note that Node A transferred most of
the funds to 0x2e44d2e0cebbadf275442193077d5d9605daec7b (Node
B), so we can assume that this node is important to the phishing
node. Hence we conduct a search for the transaction details of
this node. From the retrieved transaction details, we observe that
most of its funds originate from the phishing Node A, with the
total amount being 58.8. While the main transferee to that node is
0xd64f9a7f4ff1e6674a72a2a0f7e1c0f0aeedf6fe (Node C). So we make
a further exploration to Node C, discovering that it has received
only one sum of fund and the source is Node B. Therefore, we have
an adequate motivation to suspect Node B and Node C to be the
associated nodes of the initial phishing node, A, or the members
of an identical fraudulent collection. By tracing the flow of funds,
we can dig out some key suspicious nodes, which also provides the
possibility of recovering the fraudulent funds.

To verify whether other nodes would exhibit similar characteris-
tics of the above two associated nodes, we search for the node with
the second-highest transfer amount of this initial phishing node, A.
The result is 0x8d212fe863dcf6c27bb77393592e13cd00c80bc9 (Node
D). This node received funds of 51.4 from the Node A. Then we
examine all its transaction receiver and find no such node with
characteristics similar to the key associated node mentioned above.
Consequently, the two associated nodes are very possible to be key
nodes in collective fraudulent patterns.

Case 2: Exploratory Analysis for the Misclassified
Nodes
Another purpose of our system design is to explore the reason for
misclassification. We randomly selected nodes which are wrongly
predicted by one, two or three sets of features for our exploration.
First, for the nodes misclassified by one set of features, we randomly
select one node of this type with the data from November 2018 to
December 2018, and obtain the views shown below. (Fig.4)

Figure 4: Several views based on the data from November to
December in 2018. The phishing node wrongly predicted by
one feature extraction method is selected for exploration

From the classification view (Fig.4 a), we can learn that the clas-
sification based on derived variables is wrong. The node has been
highlightened in the 2-D projection view (Fig.4 b). However, we
cannot find out the reason for misclassification from this view for

it is close to most phishing nodes. Though it locates in the periph-
ery of the phishing nodes’ aggregation area, this is not sufficient
to account for its misclassification. Therefore, we turn to feature
distribution view (Fig.4 c). We can discover that the phishing nodes
and normal nodes appear strong differences in 𝑖𝑛𝑉𝑎𝑙𝑢𝑒 , 𝑜𝑢𝑡𝑉𝑎𝑙𝑢𝑒 ,
𝑎𝑣𝑒𝐼𝑛𝑉𝑎𝑙𝑢𝑒 , 𝑎𝑣𝑒𝑂𝑢𝑡𝑉𝑎𝑙𝑢𝑒 and 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦. They also partly distin-
guish in 𝑎𝑠𝐹𝑟𝑜𝑚𝑇𝑟𝑎𝑛𝑠𝐶𝑜𝑢𝑛𝑡 and 𝑎𝑠𝑇𝑜𝑇𝑟𝑎𝑛𝑠𝐶𝑜𝑢𝑛𝑡 , but not very
obviously. The selected node is demonstrated as a purple line in
the feature distribution view. We can tell that this node is different
from most of the other phishing nodes in the high-differentiation
feature 𝑖𝑛𝑉𝑎𝑙𝑢𝑒 , and shows a larger bias from other phishing nodes
in 𝑎𝑠𝐹𝑟𝑜𝑚𝑇𝑟𝑎𝑛𝑠𝐶𝑜𝑢𝑛𝑡 and 𝑎𝑠𝑇𝑜𝑇𝑟𝑎𝑛𝑠𝐶𝑜𝑢𝑛𝑡 . From these aspects, it
is reasonable for the misclassification induced by derived variables.

Figure 5: The second-order transaction network of a selected
node. It exhibits low complexity.

To explore the nodes misclassified by two feature extraction
methods, we brush the interval from August to September in 2018
and observe such a node. From the classification view, the features
generated by GNN and GNNWUF lead to wrong predictions. We
click on it and the second-order transaction network pops up. Unlike
other phishing nodes, its second-order transaction network has a
low complexity (Fig.5). From the 2-D projection view, this node is
distant from other phishing nodes in GNN’s andGNNWUF’s feature
space, but much closer in terms of derived variables. It is considered
that GNN’s and GNNWUF’s sensitivity in network structures lead
to their misclassification. For derived variables, despite its right
prediction, this node is at the periphery of phishing nodes’ cluster.
Observing the purple line in feature distribution view, this may
result from the heavy deviation in its 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦.

When it comes to the nodes misclassified by all three sets of fea-
tures, we select the non-phishing node 0x93e4599b1ab3a336eb23f21
689c0adc6c957f31a fromMarch 2018 to April 2018. This node’s local
transaction network appears over-complex, where there are a large
number of phishing and normal nodes. Conceivably, due to the high
complexity of its second-order network, GNN andGNNWUF cannot
properly extract the structure features, which causes its deviation
from normal nodes’ cluster in the 2-D projection view. For derived
variables, its 𝑎𝑣𝑒𝐼𝑛𝑉𝑎𝑙𝑢𝑒 ,𝑜𝑢𝑡𝑉𝑎𝑙𝑢𝑒 , 𝑎𝑣𝑒𝑂𝑢𝑡𝑉𝑎𝑙𝑢𝑒 and 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

significantly deviate from other normal nodes’ distribution. There-
fore, all three feature extraction methods cause prediction results.
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Figure 6: The 2-D projection view, consisting all nodes from
March to April in 2018. The circled node is wrongly classified
with all three feature extraction methods.

7 DISCUSSION
Traditional GNN method uses topological features of the transac-
tion network to generate vector embeddings. However, due to the
complexity of graph neural networks, these embeddings tend to
be indecipherable. So it is difficult to understand what topological
features they reflect and how they are generated. Our system in-
corporates visualization methods and provides the possibility to
explore their topological properties, such as belonging to a spe-
cific transaction group or being the central nodes of a community.
Besides, our work has the potential to be generalized for broader
applications and fields. Although our method are based on financial
transaction data in this paper, it can be adapted to other areas where
similar dynamic networks exist.

In the process of exploration, however, we also discover some
limitations of our system.

(1) Incapability for dynamic anomaly detection. So far, our sys-
tem has provided various approaches to interpreting characteristics
of phishing nodes in a downloaded dataset. However, it is unable
to dynamically identify phishing nodes from a large scale of on-
line transaction data. Dynamic and adaptive methods need to be
integrated for more effective phishing detection.

(2) Time consumption on large-scale networks. On system has
shown support for the exploration of a real-world blockchain dataset.
While the huge volume of data has consumed lots of time in data
retrieving and plot rendering. Future work may include an effective
processing method of large-scale graph data.

8 CONCLUSION
In this paper, we propose a system for exploring transaction net-
works by combiningGNN, variable derivation, classificationmethod
and visualization. Nodes in the networks are represented as vectors
by GNN, GNNWUF and derived variables. Then we use two ma-
chine learning approaches to classify the nodes. The ROC results
show all three feature extraction methods have a good performance.
For visualization, the vectors are mapped onto two-dimensional
space using t-SNE. In our visualization system, this will form the
2-D projection view. We use a timeline to select a certain time span
for rendering the transaction networks in the topological view and
classification results in the classification view. The interaction be-
tween the classification view and the node transaction network
view allows us to further explore the locally topological features of
the nodes. The feature distribution view is created to explore the

transaction feature of the nodes, which enables us to understand
the distribution of node features and interpret classification results.
We also present the node and transaction information of interest
in the detailed information view, providing us the possibility to
discover nodes with unique behavior patterns and perform fund
flow traces. In the future, we will integrate other dynamic methods
into our system for phishing detection exploration.
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