
future internet

Article

Decentralizing Private Blockchain-IoT Network with OLSR

Xuan Chen 1 , Shujuan Tian 2, Kien Nguyen 1,* and Hiroo Sekiya 1

����������
�������

Citation: Chen, X.; Tian S.; Nguyen,

K.; Sekiya, H. Decentralizing Private

Blockchain-IoT Network with OLSR.

Future Internet 2021, 13, 168. https://

doi.org/10.3390/fi13070168

Academic Editor: Paolo Bellavista

Received: 31 May 2021

Accepted: 24 June 2021

Published: 28 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan;
chenxuan@chiba-u.jp (X.C.); sekiya@faculty.chiba-u.jp (H.S.)

2 College of Information Engineering, Xiangtan University, Xiangtan 411105, China; sjtianwork@xtu.edu.cn
* Correspondence: nguyen@chiba-u.jp

Abstract: With data transparency and immutability, the blockchain can provide trustless and decen-
tralized services for Internet of Things (IoT) applications. However, most blockchain-IoT networks,
especially those with a private blockchain, are built on top of an infrastructure-based wireless net-
work (i.e., using Wi-Fi access points or cellular base stations). Hence, they are still under the risk
of Single-Point-of-Failure (SPoF) on the network layer, hindering the decentralization merit, for
example, when the access points or base stations get failures. This paper presents an Optimized Link
State Routing (OLSR) protocol-based solution for that issue in a private blockchain-IoT application.
By decentralizing the underlying network with OLSR, the private blockchain network can avoid
SPoF and automatically recover after a failure. Single blockchain connections can be extended to
multiple ad hoc hops. Services over blockchain become flexible to fit various IoT scenarios. We show
the effectiveness of our solution by constructing a private Ethereum blockchain network running
on IoT devices (i.e., Raspberry Pi model 4) with environmental data sensing (i.e., Particular Matter
(PM)). The IoT devices use OLSR to form an ad hoc network. The environment data are collected
and propagated in transactions to a pre-loaded smart contract periodically. We then evaluate the IoT
blockchain network’s recovery time when facing a link error. The evaluation results show that OLSR
can automatically recover after the failure. We also evaluate the transaction-oriented latency and
block-oriented latency, which indicates the blocks have a high transmission quality, while transactions
are transferred individually.

Keywords: blockchain; IoT; ad hoc; OLSR; decentralization; recovery

1. Introduction

Blockchain technology was first introduced in the cryptocurrency application, which
has been gaining more and more interest and popularity with Bitcoin [1], Ethereum [2],
etc. After that, with various features of decentralization, immutability, data transparency,
etc., the blockchain has shown its potential in many other fields beyond cryptocurrency,
including data sharing in healthcare [3], access control in cloud storage [4], vehicles com-
munication [5], and the Internet of Things (IoT) [6]. Notably, there is an increasing number
of works aiming to bring the decentralization nature of blockchain to strengthen IoT sys-
tems [7]. For example, in [8], by achieving distributed consensuses among participants in
IoT systems, the blockchain can provide a transparent and immutable communication and
storage platform. As a result, with blockchain, IoT services can be provided in a trustless
and decentralized manner.

Ethereum is one of the most popular blockchains, which is open source and suitable
for IoT. Ethereum notably supports the smart contract, which is automatically executable
code in the blockchain. Hence, IoT devices can perform uploaded functions or modify
store variables in a smart contract following triggering transactions. When a blockchain
node launches a transaction, instructions and/or data are propagated to all nodes among
the network, each of them executes or stores data correspondingly. In Ethereum, all legal
transactions are packaged into blocks by consensus algorithms (e.g., Proof of Work (PoW)

Future Internet 2021, 13, 168. https://doi.org/10.3390/fi13070168 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-9967-3974
https://orcid.org/0000-0003-0400-3084
https://orcid.org/0000-0003-3557-1463
https://doi.org/10.3390/fi13070168
https://doi.org/10.3390/fi13070168
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13070168
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi13070168?type=check_update&version=2

Future Internet 2021, 13, 168 2 of 14

or Proof of Authority (PoA)). After that, a complete copy of historical blocks is shared
among all participating nodes. Ultimately, IoT devices communicate and cooperate over
the Ethereum blockchain platform without a centralized authority. For example, the smart
home in [9] uses Ethereum in a home-area IoT devices management system. In [10], the
authors proposed an Ethereum-based smart edge contract, which is a computational power
trading system for edge computing.

However, although not discussed in detail, most of the previous blockchain-IoT
systems normally run on a wireless infrastructure network using Wi-Fi [11], cellular [12],
LoRa [13], or other wireless technologies. As a result, all IoT devices in a particular
area utilize blockchain services over wireless communication through a centralized node,
such as Wi-Fi access points or cellular base stations. Moreover, in the previous works, the
blockchains are carried out to assume that the underlying infrastructure-based transmission
is reliable. The assumption may not hold since the IoT network infrastructure is vulnerable
and at high risks of failure [14]. Most likely, the blockchain with all decentralization
merit in the application layer still incurs the Single Point of Failure (SPoF) at the network
level, bringing the whole blockchain-IoT system disfunction. Therefore, it is necessary
to improve the underlying network of blockchain-IoT to avoid SPoF. The ad hoc routing
protocols show a lot of potential to bypass the issue. The nodes with ad hoc routing can
flexibly communicate with others to form a network, enhancing resilience compared to the
infrastructure ones.

This work proposes and implements a decentralized private blockchain-IoT system
over an ad hoc network [15] with the Optimized Link State Routing (OLSR) protocol [16].
With OLSR, IoT devices in the blockchain application can directly communicate with others
without wireless infrastructures. In other words, the blockchain-IoT systems thoroughly
perform in a decentralized method in the application and network layers. We show the
effectiveness of our proposal in an environmental monitoring application with four Rasp-
berry Pi model 4 (RPi4) nodes as IoT devices and a PM sensor. Each RPi is equipped with an
OLSR daemon (OLSRd) and an Ethereum client (Geth). One RPi with the sensor performs
as a sender that collects and submits PM data to a pre-loaded smart contract. Another RPi
is involved as a receiver and in charge of mining blocks and monitoring if the PM data
exceed an alert value. The sender keeps streaming transactions to the receiver directly via
a blockchain connection. First, we evaluate the IoT blockchain system with underlying
network failures. The results show that the blockchain connection could recover from the
failures, eliminating the SPoF issue on the network layer. Second, we evaluate the latency
performance of blocks and transactions using the characterizing method in [11]. The
results show nodes in the ad hoc network transfer blocks more smoothly than transactions
since transactions are transferred individually. Meanwhile, the infrastructure network
propagated the information more efficiently than the ad hoc network.

The remainder of the paper is organized as follows. Section 2 presents related works,
while Section 3 introduces the background of Ethereum blockchain and OLSR protocol.
In Section 4, we present our decentralized system over an ad hoc network. Section 5
describes the evaluation results. Finally, Section 6 concludes the paper.

2. Related Work

Blockchain essentially is a distributed ledger based on peer-to-peer (P2P) communi-
cation, which significantly improves the traditional centralized models. One of the most
representative applications that benefit from decentralization is voting as in [17]. The au-
thors proposed an online blockchain-based voting platform that enforces immutability and
transparency. In [18,19], the blockchain technology is used for the Internet of Vehicles (IoV).
The results show significant advantages in security, data storage, and real-time response.
The authors of [20,21] discussed adopting different blockchains for healthcare services.
They showed that the private blockchain is a popular trust-preserving solution within
the healthcare ecosystem. The authors of [22] introduced an Ethereum blockchain-based
healthcare management for a large amount of medical data and different workflows for

Future Internet 2021, 13, 168 3 of 14

medical procedures. A blockchain-based healthcare framework in [23] allows local net-
works to submit transactions to a blockchain network. The local networks stretch from
IoT devices encircling patients, established as the Internet of Medical Things, to the local
healthcare service provider.

In the IoT field, many works use the private blockchain in decentralized IoT systems.
However, the underlying network is commonly omitted or regarded as an infrastructure-
based wireless network. For example, in the blockchain-based smart home in [24], the
system’s backbone comprises several cluster headers, which manage private blockchains
for their cluster. The underlying network in each cluster is not discussed, while IoT
devices in each cluster are connected to a Wi-Fi access point or a cellular base station
as default. In another smart home with blockchain [9], the Raspberry Pi Model 3B and
DHT11 sensor are used to monitor temperature and humidity with a DHT11 sensor. The
monitoring results are presented to the Blynk App on the smartphone. However, the system
runs over a Wi-Fi access point, according to the smartphone screenshot. The blockchain-
based healthcare systems described above are usually built over infrastructure networks,
as illustrated. In [12], the authors considered different underlying networks in a real-
world private Ethereum application. In this work, the Wi-Fi and 3G cellular networks are
involved in a blockchain-based flood monitoring and detection system. A comparison work
in [25,26] indicates that decentralized generated mesh networks have a higher efficiency
to cover irregular spaces than centralized generated ones. A decentralized network could
automatically adapt according to local information, which is capable of avoiding SPoF.
Thus, decentralized ad hoc networks may be an alternative to build blockchain networks
with higher robustness.

Several works in the literature consider a combination of ad hoc networks and
blockchains. In [27], a self-managed vehicular ad hoc network that uses routing with
smart contracts is proposed. The authors found the feasibility of performing various
applications, such as traffic regulation, vehicle tax, and vehicle insurance, on blockchain
platforms with proper routing. The work in [28] manages group keys dynamically with
blockchain for an unmanned aerial vehicles ad hoc network. The keys can be recovered
from neighbors when lost or attacked. In that sense, blockchain provides immutable stor-
age here. Moreover, a smart contract-based contractual routing protocol is proposed in [29]
for the ad hoc network. The proposed protocol has a higher tolerance on the transmis-
sion delay or malicious nodes in a decentralized manner. The authors of [30] proposed a
blockchain-enabled Stackelberg competition mechanism to improve the performance of
the QoS-OLSR protocol. On-chain smart contract is integrated into off-chain QoS-OLSR
protocol to motivate participants, utilizing the monetary feature. A blockchain-embedded
OLSR protocol is presented in [31,32] to solve security problems on routing issues. A policy-
and reputation-based trust management framework is constructed with smart contracts for
identifying malicious attackers and trusted nodes. Probably, the closest work to ours was
presented by Laube et al. [33], who improved the underlying network of IoT-blockchain
with a mobile node. They defined a so-called network splitting and merging problems in
the ad hoc networks. Our work is similar in terms of the integration of ad hoc routing and
blockchain. However, we concentrate on recovery capability against failure over ad hoc
network with OLSR protocol. Moreover, we uniquely consider the integration on a real
system with real hardware, sensing, and blockchain. An overview of related works with
their main contributions is shown in Table 1.

Future Internet 2021, 13, 168 4 of 14

Table 1. Overview of the related works and ours.

Topics Method Feature References

General
blockchain
applications

Decentralized
voting

Implementation
on Ethereum

Transparent and
immutable voting

[17]

Internet of
Vehicles

Simulation Transparent storage [18]

Simulation Power trading on
blockchain

[19]

Distributed
healthcare

Implementation
on Ethereum

Distributed data
sharing

[22]

Simulation Blockchain integrate
with edge computing

[23]

Blockchain-
IoT

applications

Smart home

Simulation
Decentralized

large-scale smart
home

[24]

Implementation
on Ethereum

Environment monitor
with RPi3

[9]

Flood
monitoring

Implementation
on Ethereum

Blockchain on 3G and
Wi-Fi networks

[12]

Blockchain
enhanced ad
hoc network

Vehicle ad hoc
network

Simulation Decentralized IoV
with blockchain

[27]

Simulation Blockchain manage
vehicles group keys

[28]

Simulation
Blockchain-based

reputation
verification

[30]

Routing
protocol

Simulation Blockchain-based
routing protocol

[29]

Mesh network Simulation
Centralized and

distributed sensor
networks

[25,26]

Ad hoc
improved
blockchain

network

Sensor
networks

Simulation Blockchain-base trust
management

[31,32]

Blockchain
over ad hoc

network

Simulation Analysis of split and
merge problems

[33]

Implementation
on Ethereum

Recovery from node
failure with OLSR

This work

3. Background
3.1. Ad Hoc Network and OLSR

In the IoT blockchain applications, the IoT devices majorly communicate over wireless
infrastructure networks. In such cases, the blockchain and non-blockchain traffic is usually
sent/received on infrastructures including Wi-Fi networks, cellular, or LoRa. As a result,
the performance and sustainability entirely depend on a central point, such as Wi-Fi access
points, cellular base stations, or LoRa gateways. That is because all the packets are routed to
the central devices before arriving at the final destinations. Moreover, the communication
range of the whole network is limited to the radio coverage range of the devices. On the
other hand, as defined in the popular IEEE 802.11 [34], wireless communications are not
merely driven as infrastructure but also ad hoc networks. Ad hoc networks can be formed
by a group of nodes, which directly communicate with each other. In the opposite of the
wireless infrastructure, the ad hoc network drives the data packet between nodes without
the central point. Since the wireless communication range limits a wireless node, the node
needs to participate in the routing activity to reach others. This can be realized with an ad
hoc routing protocol. In such a case, the nodes can cooperate to expand the coverage of
the network.

Future Internet 2021, 13, 168 5 of 14

The OLSR protocol is a table-driven, proactive routing protocol for ad hoc networks.
An OLSR node discerns links, detects neighbors, and decides Multipoint Relays (MPR)
nodes with HELLO messages before establishing the routing table. It periodically broadcasts
HELLO messages with its neighbors’ information to reachable nodes. Upon receiving
the HELLO messages with attached parameters, the receiver divides associated links into
asymmetric link (ASYM_LINK), symmetric link (SYM_LINK), and lost link (LOST_LINK). The
node records the sender to their one-hop neighbor set with an asymmetric link sensed. By
sending back a HELLO message, the sender acknowledges the receiver with the symmetric
link discerned. Similarly, the receiver’s one-hop neighbors become the two-hop neighbors
of the sender. By constantly discerning neighbors, each node detects two sets, indicating
the one-hop and two-hop neighbors locally. Furthermore, each node selects a set of
Multipoint Relays (MPR) from its one-hop neighbors to cover all two-hop neighbors. Only
selected MPR nodes are responsible for forwarding network traffic. Consequently, the
OLSR protocol minimizes the overhead of flooding messages by reducing redundant
retransmission [35]. The selected MPRs shape the backbone of the information propagation
topology. Finally, the routing table is calculated based on the topology information. IETF
RFC 3626 defines the protocol and a set of parameters for an OLSR node [16]. We present
the time parameters and their definition in Table 2. Several important parameters related
to HELLO messages are as follow.

• HELLO_INTERVAL or Thello determines the time interval of HELLO message emission
for each node. This parameter is included in a HELLO message. Thello is set to 2 s
by default.

• REFRESH_INTERVAL: Each known neighbor node has to be mentioned at least once
during a REFRESH_INTERVAL to keep track of the latest connectivity changes. Tre f resh
is equal to Thello by default.

• NEIGHB_HOLD_TIME or Thold specifies until when the information provided in the
latest HELLO message is considered to be valid. The Thold = 3 × Tre f resh by default.

• Validity Time Tvalidity determines the time when the messages (including HELLO mes-
sages) will expire from reception.

Table 2. OLSR time parameters.

Parameter Definition Explanation

Thello HELLO_INTERVAL

Tre f resh REFRESH_INTERVAL equal to Thello

Thold NEIGHB_HOLD_TIME three times of Thello

Tvalidity Validity time

L_SYM_time Timer for symmetric links equal to Tvalidity

L_ASYM_time Timer for asymmetric links equal to Tvalidity

L_LOST_LINK_time Timer for lost links equal to Thold

After receiving a HELLO message, the local links will be updated according to the
attached information. All symmetric links and asymmetric links are restricted with a timer
to show when the links are expired, namely L_SYM_time and L_ASYM_time, respectively.
Both timers are set to the current time plus Validity Time. A node loss response comes from
a regular pace of disseminating HELLO messages. The link is restricted by another time
L_LOST_LINK_time, which is defined as the current time plus NEIGHB_HOLD_TIME. The
link is still regarded as SYM_LINK or ASYM_LINK since a packet loss may cause it. The timer
will be revoked on the arrival of a HELLO message. On the contrary, if L_LOST_LINK_time
expires without a standard message received, the link will be regarded as lost marked as
LOST_LINK. The lost links are advertised in messages rather than dropped immediately,

Future Internet 2021, 13, 168 6 of 14

allowing nodes to detect link breakages. After the expiration of SYM_LINK or ASYM_LINK
timers, the link is finally removed.

3.2. Ethereum

Ethereum is well-known in the form of a cryptocurrency over a public blockchain
network, namely Mainnet. At the same time, Ethereum also supports private blockchain,
which can be deployed and edited by users. The private blockchain networks are iso-
lated to the public Ethereum. Only the blockchain nodes with permissions can access the
private blockchain. The nodes in the Ethereum blockchain construct their P2P commu-
nication entirely in the transport and application layers of the networking stack. More
specifically, they use Recursive Length Prefix transport protocol (RLPx) and Ethereum
Wire Protocol (ETH) [2]. RLPx is responsible for serializing messages transmitted in
blockchain connections. ETH defines how peers are enabled to interact with different
messages. The synchronization of transactions and blocks is one of the most signifi-
cant parts during the interaction [36]. The nodes propagate transactions and blocks
to keep synchronizing the latest actions and events. Moreover, transactions that have
not been admitted into blocks are propagated and managed with the TxPool module
(https://github.com/ethereum/go-ethereum/blob/master/core/tx_pool.go (accessed on
24 June 2021)). The received transactions are arranged in TxPool that is located on every
node and further propagated to cover the entire network as rapidly as possible. The blocks,
which contain block headers and various admitted transactions in block bodies, are dissem-
inated according to the protocol defined in the Downloader package (https://github.com/
ethereum/go-ethereum/blob/master/eth/downloader/downloader.go (accessed on 24
June 2021)). Using an ad hoc routing protocol such as OLSR, a blockchain connection could
leverage the multi-hop characteristic in the ad hoc network. Directed by the routing proto-
col, each node could reach more peers rather than in the case of infrastructure restriction. It
may accelerate information propagation to the entire blockchain network [37].

4. Decentralization of IoT Blockchain System
4.1. Motivation

As mentioned, blockchain technology brings decentralization to IoT systems. How-
ever, the underlying network is normally built on top of the wireless infrastructure network.
For example, Figure 1 shows a typical private blockchain-IoT, which runs over a Wi-Fi
network. It is obvious that all the communication of blockchain nodes in the system relies
on the access point. Hence, all packets generated by blockchain connections are transmitted
and received via the access point. When a link failure happens, the associated blockchain
node will be removed (from the system) even though it is still fully functional. If the access
point fails due to power shortage or damage, the whole system is corrupted. Consequently,
all the decentralization merits disappear. Hence, this system incurs the single point of fail-
ure issue in the network layer. To further enhance the adoption capability of IoT blockchain,
it is necessary to solve this problem.

Turning the underlying network of IoT blockchain into ad hoc one is a potential
method to handle the issue. The ad hoc network does not have a centralized point as in the
infrastructure one. Moreover, each node in an ad hoc mode can receive and forward mes-
sages, facilitating decentralization. By dispatching packets by network nodes rather than
a specific centralized point, the blockchain connections become self-organized. Another
merit is that the blockchain-IoT network, which is normally limited by the access point’s
communication range, can be extended by adding new IoT nodes. However, all the packets
traverse through several nodes to a destination require an ad hoc routing protocol. More
importantly, the routing may allow IoT nodes to search for adaptable, dynamic routing
paths, recovering from network failure. Since the ad hoc routing is lightweight and low
performance, it is important to investigate its operation with blockchains. In the next
sections, we present our approach with OLSR.

https://github.com/ethereum/go-ethereum/blob/master/core/tx_pool.go
https://github.com/ethereum/go-ethereum/blob/master/eth/downloader/downloader.go
https://github.com/ethereum/go-ethereum/blob/master/eth/downloader/downloader.go

Future Internet 2021, 13, 168 7 of 14

(a) Infrastructure network (b) Ad hoc network

Figure 1. Blockchain-IoT system over an infrastructure network and an ad hoc network.

4.2. Decentralizing Underlying Blockchain Network

In this paper, we investigate the decentralization of the underlying network in a
blockchain-IoT application. In our approach, we aim to build a blockchain system close
to the actual applications, in which sensors normally sense the environment and push
to the blockchain. For that purpose, we emulate an environment monitoring application
with the particulate matter (PM) sensor that can report the PM data. The skeleton of the
whole system is IoT devices, which can run blockchain and the OLSR protocol. In our
previous work, we confirmed that the popular IoT device RPi4 is powerful enough to
operate Proof of Work (PoW) or mining task [38]. On the other hand, RPi4 supports Linux-
based operating systems, which can host the OLSR implementation code. Furthermore,
RPi4’s Wi-Fi implementation also well supports the ad hoc mode. Therefore, RPi4 was
selected as the hardware to build our system. Each RPi4 node works in a wireless ad hoc
mode with OLSR protocol and participates in the Ethereum blockchain’s operation. We
also leverage the smart contract technology to record the PM data into the blockchain
automatically. In our investigation, we consider the blockchain communication between a
sender and a receiver. A sender is a node with the sensor that disseminates its collected
PM data with transactions, which then are mined into blocks. The data are stored on the
blockchain through transaction execution. Our written smart contract can monitor the
logged data and perform a processing task. More specifically, it emits events once the PM
data exceed an alerting value. The receiver receives the transactions, produces blocks with
the PoW algorithm, and listens to the smart contract events. The blockchain decentralizes
the application in the system, which delivers and processes data without a centralized
authority. The functionalities of the underlying network are distributed by the ad hoc mode
and OLSR protocol at every node. The system is evaluated with the following metrics
when transactions are streaming from the sender to the receiver.

Recovery time: A blockchain connection over multiple hops in an OLSR ad hoc
network depends on the MPRs, which form the backbone. When a sender propagates
transactions to the receiver, the data packets are forwarded by the MPR nodes. If a
middle forwarding MPR node fails, the transactions will be accumulated in the sender’s
TxPool. Moreover, the receiver temporarily loses the synchronization with the sender.
After a failure happens in OLSR, the nodes first need to realize the failure and MPR in the
transmission path by the expiration of the latest HELLO message. If the Tvalidity is greater
than Thold, the HELLO messages expire after waiting for Tvalidity. The link of a failed node is
marked as LOST_LINK. Otherwise, if the Tvalidity is smaller than the Thold (i.e., three times of
Thello), the HELLO messages expire after Thold. Second, the nodes select a new candidate for
MPR from the one-hop neighbor set and disseminate the selection result to the targeted
node in the next following HELLO message. Upon receiving the message, the new node
starts forwarding packets and notifies them to perform as an MPR (in a HELLO message).
When the route is successfully rebuilt, the overlying blockchain connection is consequently
resumed after the processing at the transport and application layers (denoted as Tblockchain).
In Ethereum blockchain, by default, the client Geth will drop peers without responses after

Future Internet 2021, 13, 168 8 of 14

the inactive period of 30 s (https://github.com/ethereum/go-ethereum/blob/master/p2
p/server.go (accessed on 25 June 2021)). We build a simple equation to capture the recovery
time in Equation (1). After recovery, the receiver resumes synchronization to the sender,
the group of accumulated transactions is synchronized to the receiver immediately. We
can define the recovery time (i.e., on the blockchain level) as the period from when the
blockchain synchronization is lost to the moment it resumes.

Trecovery =

{
Tvalidity + Thello + Tblockchain Tvalidity > Thold

Thold + Thello + Tblockchain Tvalidity ≤ Thold
(1)

Latency performance: With more peers related, a node could disseminate information
directly with more blockchain connections. Over a decentralized network, a node could
reach peers which are beyond their radio range, through multiple ad hoc hops. It allows
information directly propagated to more peers and a shorter latency to cover the entire
network [39]. According to our previous work [40], the transaction and block propagation
latency from end to end in a blockchain connection could be evaluated as transaction-
oriented latency (TOL) and block-oriented latency (BOL). In transaction propagation, TOL
describes the latency from transaction submission to transaction arrival. BOL describes
the latency from block generation to block arrival. We evaluate both TOL and BOL in
information propagation from sender to receiver of a two-hop ad hoc connection associated
with a MPR. Both types of latency are highly related to the network link condition and
could be measured from the log file of both clients.

5. Evaluation
5.1. Experiment Setup

In our evaluation, we deployed four RPi4 nodes on the fifth floor of the first building
in the Faculty of Engineering, Chiba University, with the topology shown in Figure 2. The
distances between nodes are illustrated in the figure. The figure also illustrates the distances
between the nodes. The hardware configurations of each RPi and software are listed in
Table 3. Since RPi4 is capable of mining blocks, a centralized, powerful mining node is
not necessary in this case. The wireless adapters were configured in the ad hoc mode to
run the OLSR protocol. We adopted the OLSR implementation from the OLSRd package
(http://www.olsr.org/mediawiki/index.php/Releases (accessed on 21 June 2021)). In
each RPi node, the OLSRd module was configured with the default Willingness value
(equalling 3), indicating the willingness to become an MPR. The nodes ran the Ethereum
client, the unmodified version of Geth (https://geth.ethereum.org/downloads/ (accessed
on 22 June 2021)), to form a private blockchain that starts with a custom genesis file in
Geth. The Nova PM Sensor SDS011 air quality sensor was used, which can detect the
0.3–10 µm particle concentration in the air. The output data of Nova Sensor include the
PM2.5 and PM10 indexes. The sensor could be programmed with the sds011-client
module (https://github.com/ivkos/sds011-client (accessed on 21 June 2021)) for Node.js.
We allowed the sensor work to be in active or query mode. In the former, the sensor actively
released data as soon as they were available, while, in the latter, the sensor passively
responded to requests at a periodic pace.

https://github.com/ethereum/go-ethereum/blob/master/p2p/server.go
https://github.com/ethereum/go-ethereum/blob/master/p2p/server.go
http://www.olsr.org/mediawiki/index.php/Releases
https://geth.ethereum.org/downloads/
https://github.com/ivkos/sds011-client

Future Internet 2021, 13, 168 9 of 14

Figure 2. Evaluation topology.

Table 3. RPi4 Configuration.

CPU Quad core Cortex-A72@1.5 GHz

RAM 4 GB

Wireless chip BCM4345/6

OS Ubuntu Mate 20.04 LTS

PM sensor Nova PM Sensor SDS011

Ethereum Geth 1.9.25

OLSR olsrd-0.9.0.3

We conducted the experiments over RPi4 nodes as the following. First, we deployed a
smart contract to the blockchain, which recorded PM2.5 and PM10 data as state variables.
Moreover, the contract emitted events when any of them exceeded a pre-defined value.
Second, the sender RPi4 ran a script (with sds011-client library) requesting PM data
every second. It then wrapped the data into transactions and submitted them to the
blockchain with the Web3 library via Remote Procedure Call (RPC) to the local Ethereum
client. The transactions were automatically disseminated to any reachable blockchain peers.
Third, the receiver collected propagated transactions and mined them into blocks. Once a
block was accepted, the block’s inside transactions were executed. Then, the state variables
were modified in the smart contract. If the state variable exceeded the pre-defined value,
the blockchain emitted an event logged in the block header. The receiver listened to the
event with Web3 library and readied an alert. Finally, we synchronized the system time
of the RPi4 nodes for more accurate latency measurements with the ntpdate utility (i.e.,
using Network Time Protocol).

In the experiment environment, the sender was out of the receiver’s communication
range. Hence, they could not communicate with each other without a relaying or forward-
ing node (e.g., an access point or an MPR node). When the OLSR protocol was enabled
in the network, Nodes 1 and 4 discerned the reachable one-hop neighbors, Nodes 2 and
3, with HELLO messages. They selected one of them as an MPR node to transmit data and
control packets. After forming a reachable path, they could build a blockchain connection
via Links 1 and 3 (marked as Path 1) or Links 2 and 4 (marked as Path 2). Since there are
two available paths, the blockchain connection could recover from the MPR node failure
by selecting a new MPR node following the procedure of OLSR routing protocol.

Future Internet 2021, 13, 168 10 of 14

5.2. Recovery Time

This section evaluates and quantifies the performance of blockchain connection when
it recovers from a failure in the underlying network. More specifically, there is an MPR
failure during the blockchain operation. The sender keeps requesting data and streaming
transactions at the speed of one transaction per second (tps). Transactions are propagated
to the receiver via a selected MPR (Node 2 or Node 3), which can be observed with
tcptraceroute tool. We then force the MPR node to shut down. On the collapse, the
blockchain connection and transaction stream to the receiver are interrupted, thus the
receiver loses synchronization with the sender. However, the network is not recovered
immediately. The sender initially needs to confirm the MPR is out of connection by the
expiration of the latest HELLO message according to Equation (1). Second, the sender selects
a new MPR (the left alive node) and notifies the new MPR to start packets forwarding within
the following HELLO messages. After acknowledgment of the new MPR node, packets
including OLSR and blockchain messages finally get their destinations. The blockchain
re-certifies the connection and resumes the transaction synchronization. In our experiment
settings, Thello equals to 2 s, thus Thold becomes 6 s. Tvalidity is set to 20 s in the configuration
file. Tvalidity is greater than Thold, which means the sender needs to wait for the expiration of
the last legal HELLO message for over 20 s. Then, it calls for a new MPR node in the next 2 s
with the pace of HELLO message dissemination. The entire recovery time is reflected in the
number of transactions in both sender and receiver’s Txpool. We record the accumulated
number of transactions in the Txpool of both sides via inter-process communication (IPC)
and show the cumulative curve of four measurements in Figure 3. We can see that the
trend in the four subfigures is similar. After the failure, the transactions are queued at the
sender’s txpool (the “Sync lost” mark). When OLSR finds a new route, the operation is
back to normal at the “Sync resume” mark. From the experiment results, the recovery time
from when the synchronization is lost to resumed has an average value of 22.3 s, which
proves the blockchain is recoverable from the underlying network failures.

5.3. Latency Performance

In an ad hoc network, nodes can directly communicate with peers in their wireless
communication range. Deploying the OLSR protocol will provide paths to other nodes in
the network. In our experiment, the connections between peers are marked as OLSR links,
as shown in Figure 2. The distances of Links 1 and 2 are 10 m, while those of Links 3 and 4
are 40 m. As a result, the blockchain communication between the sender and the receiver
can go through two paths denoted as Paths 1 and 2. First, we evaluate the performance
of each path with Ping time, packet loss rate, and throughput. We use the iperf3 tool to
measure those performance metrics, and the results are shown in Table 4. It is obvious that
the OLSR link has a better performance when the nodes are between a shorter distance.
The table also shows the comparison of wireless link performance in an infrastructure
network with Wi-Fi. We replace Node 3 with an access point; hence, Path 2 becomes the
infrastructure-based links. We let the packets pass through the same path for comparison.
We can see that the transmission delay is smaller in the infrastructure mode, and the loss
rate is lower, which lead to a shorter propagation latency in the later measurements.

Future Internet 2021, 13, 168 11 of 14

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

Sync lost Sync resume
N

um
be

r o
f t

ra
ns

ac
tio

ns

Time (seconds)

Sender’s txpool
Receiver’s txpool

(a) 1st experiment

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

Sync lost Sync resume

N
um

be
r o

f t
ra

ns
ac

tio
ns

Time (seconds)

Sender’s txpool
Receiver’s txpool

(b) 2nd experiment

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

Sync lost Sync resume

N
um

be
r o

f t
ra

ns
ac

tio
ns

Time (seconds)

Sender’s txpool
Receiver’s txpool

(c) 3rd experiment

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

Sync lost Sync resume

N
um

be
r o

f t
ra

ns
ac

tio
ns

Time (seconds)

Sender’s txpool
Receiver’s txpool

(d) 4th experiment

Figure 3. Experimental results of recovery time.

In the following, we present the latency measurement in our IoT blockchain network.
During the data streaming, submitted transactions are propagated to the receiver through
one path from the sender to the server. The receiver then loads a JavaScript file, which starts
the mining process to admit and execute transactions into blocks when the Txpool is not
empty. The generated blocks are propagated to every participates in confirming their up-
loaded transactions. We collect both Geth logs and measure Transaction-Oriented Latency
(TOL) and Block-Oriented Latency (BOL) with different groups of transactions. The TOL
results are shown in Figure 4. We can see that the TOL of a single transaction propagation
is on average 18.9 and 19.1 ms for the two-hop paths. When sending multiple transactions
in groups, transactions are propagated continuously without waiting to confirm previous
transactions. Consequently, propagating ten transactions consumes 66.7 and 68.2 ms for
both paths, while 100 transactions averages 443.4 and 449.3 ms, respectively. Propagated
transactions are mined into blocks by the receiver, which is disseminated back to the sender.
With more transactions inside, a block becomes more extensive and has a greater BOL. The
blocks with a single transaction have a similar BOL an TOL. However, as the transaction
number grows, BOL becomes smaller than TOL. The results indicate blockchain over an ad
hoc network has a better experience on block propagation than transaction propagation.
Because transactions are transferred individually, each transaction is divided into three
or more TCP packets, while blocks are serialized before transmission. In comparison
with infrastructure mode, the packets are re-transmitted by the access point. Hence, it is
reasonable that information dissemination is commonly quicker than ad hoc mode.

Future Internet 2021, 13, 168 12 of 14

 0

 100

 200

 300

 400

 500

 600

 700

0 1 10 100

La
te

nc
y

(m
s)

Number of transactions inside of a group

Path 1
Path 2
Path 2 in infrastructure mode

(a) TOL

 0

 20

 40

 60

 80

 100

 120

0 1 10 100

La
te

nc
y

(m
s)

Number of transactions inside of a block

Path 1
Path 2
Path 2 in infrastructure mode

(b) BOL

Figure 4. Latency performance between the sender and the receiver.

Table 4. Link evaluation.

Ping (ms) Lost Rate (%) Throughput (Mbit/s)

Link 1 1.991 0.009 22.4

Link 2 2.165 0.01 21.8

Link 3 10.643 1.76 2.49

Link 4 9.975 1.82 2.13

Path 1 13.599 1.79 2.09

Path 2 13.370 1.85 1.93

Path 2 in
infrastructure mode 11.834 0.93 1.56

6. Conclusions and Future Works

This paper introduces a method of decentralizing the underlying network of the
private blockchain-IoT system using OLSR. The private blockchain-IoT networks will
benefit from the flexibility of the routing protocol by operating over multiple ad hoc IoT
nodes. Moreover, the blockchain connection well recovers from failures, which may happen
in various IoT application scenarios. We built a real Ethereum blockchain-IoT network
that works as a monitoring application. The network collects PM monitoring data and
transfers them over the ad hoc network with the OLSR protocol. The evaluation results
show that the blockchain connection recovers from the underlying network failures within
22.3 s on average. Besides, we also evaluated and compared the latency performance in ad
hoc and infrastructure networks. The results show that the blockchain connection over an
ad hoc network has a better latency for block propagation than transaction propagation.
Meanwhile, the infrastructure network disseminates information more quickly than the ad
hoc network through the same path.

In the future, we will investigate and evaluate the recovery time when varying other
parameters such as different validity time, traffic conditions, etc., aiming to find the optimal
recovery time. Moreover, we plan to conduct a comparative study of different ad hoc
routing protocols in blockchain-IoT networks.

Author Contributions: Conceptualization, X.C. and K.N.; methodology, X.C. and K.N.; software,
X.C.; validation, X.C. and K.N.; formal analysis, X.C.; investigation, X.C., S.T. and K.N.; resources,
X.C.; writing—original draft preparation, X.C. and K.N.; writing—review and editing, S.T., K.N. and
H.S.; supervision, K.N. and H.S.; project administration, K.N.; funding acquisition, K.N. All authors
have read and agreed to the published version of the manuscript.

Future Internet 2021, 13, 168 13 of 14

Funding: This work was supported by JSPS KAKENHI Grant Numbers 19K20251 and 20H04174.
Additionally, Kien Nguyen is supported by the Leading Initiative for Excellent Young Researchers
(LEADER) program from MEXT, Japan.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System; Technical Report; Manubot: Seocho-gu, Seoul, Korea, 2019.
2. Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32.
3. Xia, Q.; Sifah, E.B.; Asamoah, K.O.; Gao, J.; Du, X.; Guizani, M. MeDShare: Trust-less medical data sharing among cloud service

providers via blockchain. IEEE Access 2017, 5, 14757–14767. [CrossRef]
4. Wang, S.; Zhang, Y.; Zhang, Y. A blockchain-based framework for data sharing with fine-grained access control in decentralized

storage systems. IEEE Access 2018, 6, 38437–38450. [CrossRef]
5. Gao, F.; Zhu, L.; Shen, M.; Sharif, K.; Wan, Z.; Ren, K. A blockchain-based privacy-preserving payment mechanism for

vehicle-to-grid networks. IEEE Netw. 2018, 32, 184–192. [CrossRef]
6. Kshetri, N. Can blockchain strengthen the internet of things? IT Prof. 2017, 19, 68–72. [CrossRef]
7. Lo, S.K.; Liu, Y.; Chia, S.Y.; Xu, X.; Lu, Q.; Zhu, L.; Ning, H. Analysis of blockchain solutions for IoT: A systematic literature

review. IEEE Access 2019, 7, 58822–58835. [CrossRef]
8. Mingxiao, D.; Xiaofeng, M.; Zhe, Z.; Xiangwei, W.; Qijun, C. A review on consensus algorithm of blockchain. In Proceedings of

the International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 2567–2572.
9. Xu, Q.; He, Z.; Li, Z.; Xiao, M. Building an ethereum-based decentralized smart home system. In Proceedings of the International

Conference on Parallel and Distributed Systems (ICPADS), Singapore, 11–13 December 2017; pp. 1004–1009.
10. Wright, K.L.; Martinez, M.; Chadha, U.; Krishnamachari, B. SmartEdge: A smart contract for edge computing. In Proceedings of

the International Conference on Internet of Things (iThings), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1685–1690.
11. Chen, X.; Nguyen, K.; Sekiya, H. Characterizing Latency Performance in Private Blockchain Network. In International Conference

on Mobile Networks and Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 238–255.
12. Alrubei, S.M.; Ball, E.A.; Rigelsford, J.M.; Willis, C.A. Latency and Performance Analyses of Real-World Wireless IoT-Blockchain

Application. IEEE Sens. J. 2020, 20, 7372–7383. [CrossRef]
13. Ozyilmaz, K.R.; Yurdakul, A. Designing a Blockchain-Based IoT With Ethereum, Swarm, and LoRa: The Software Solution to

Create High Availability With Minimal Security Risks. IEEE Consum. Electron. Mag. 2019, 8, 28–34. [CrossRef]
14. Modarresi, A.; Sterbenz, J.P. Towards a model and graph representation for smart homes in the IoT. In Proceedings of the 2018

IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, 16–19 September 2018; pp. 1–5.
15. Anastasi, G.; Borgia, E.; Conti, M.; Gregori, E. IEEE 802.11 b ad hoc networks: Performance measurements. Clust. Comput. 2005,

8, 135–145. [CrossRef]
16. Clausen, T.; Jacquet, P. RFC3626: Optimized Link State Routing Protocol (OLSR). 2003. Available online: https://datatracker.ietf.

org/doc/html/rfc3626 (accessed on 23 June 2021)
17. Khoury, D.; Kfoury, E.F.; Kassem, A.; Harb, H. Decentralized voting platform based on ethereum blockchain. In Proceedings of

the International Multidisciplinary Conference on Engineering Technology (IMCET), Beirut, Lebanon, 14–16 November 2018;
pp. 1–6.

18. Jiang, T.; Fang, H.; Wang, H. Blockchain-based internet of vehicles: Distributed network architecture and performance analysis.
IEEE Internet Things J. 2018, 6, 4640–4649. [CrossRef]

19. Liu, H.; Zhang, Y.; Zheng, S.; Li, Y. Electric vehicle power trading mechanism based on blockchain and smart contract in V2G
network. IEEE Access 2019, 7, 160546–160558. [CrossRef]

20. Hasselgren, A.; Kralevska, K.; Gligoroski, D.; Pedersen, S.A.; Faxvaag, A. Blockchain in healthcare and health sciences—A
scoping review. Int. J. Med. Inform. 2020, 134, 104040. [CrossRef]

21. Razdan, S.; Sharma, S. Internet of Medical Things (IoMT): Overview, Emerging Technologies, and Case Studies. IETE Tech. Rev.
2021, 1–14. doi:10.1080/02564602.2021.1927863. [CrossRef]

22. Khatoon, A. A blockchain-based smart contract system for healthcare management. Electronics 2020, 9, 94. [CrossRef]
23. Abdellatif, A.A.; Al-Marridi, A.Z.; Mohamed, A.; Erbad, A.; Chiasserini, C.F.; Refaey, A. ssHealth: Toward secure, blockchain-

enabled healthcare systems. IEEE Netw. 2020, 34, 312–319. [CrossRef]
24. Dorri, A.; Kanhere, S.S.; Jurdak, R.; Gauravaram, P. Blockchain for IoT security and privacy: The case study of a smart home.

In Proceedings of the International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops),
Kona, HI, USA, 13–17 March 2017; pp. 618–623.

25. Derr, K.; Manic, M. Wireless sensor network configuration—Part I: Mesh simplification for centralized algorithms. IEEE Trans.
Ind. Inform. 2013, 9, 1717–1727. [CrossRef]

http://doi.org/10.1109/ACCESS.2017.2730843
http://dx.doi.org/10.1109/ACCESS.2018.2851611
http://dx.doi.org/10.1109/MNET.2018.1700269
http://dx.doi.org/10.1109/MITP.2017.3051335
http://dx.doi.org/10.1109/ACCESS.2019.2914675
http://dx.doi.org/10.1109/JSEN.2020.2979031
http://dx.doi.org/10.1109/MCE.2018.2880806
http://dx.doi.org/10.1007/s10586-005-6179-3
https://datatracker.ietf.org/doc/html/rfc3626
https://datatracker.ietf.org/doc/html/rfc3626
http://dx.doi.org/10.1109/JIOT.2018.2874398
http://dx.doi.org/10.1109/ACCESS.2019.2951057
http://dx.doi.org/10.1016/j.ijmedinf.2019.104040
http://dx.doi.org/10.1080/02564602.2021.1927863
http://dx.doi.org/10.3390/electronics9010094
http://dx.doi.org/10.1109/MNET.011.1900553
http://dx.doi.org/10.1109/TII.2013.2245906

Future Internet 2021, 13, 168 14 of 14

26. Derr, K.; Manic, M. Wireless sensor network configuration—Part II: Adaptive coverage for decentralized algorithms. IEEE Trans.
Ind. Inform. 2013, 9, 1728–1738. [CrossRef]

27. Leiding, B.; Memarmoshrefi, P.; Hogrefe, D. Self-managed and blockchain-based vehicular ad-hoc networks. In Proceedings of
the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, Heidelberg, Germany, 12–16
Sepember 2016; pp. 137–140.

28. Li, X.; Wang, Y.; Vijayakumar, P.; He, D.; Kumar, N.; Ma, J. Blockchain-based mutual-healing group key distribution scheme in
unmanned aerial vehicles ad-hoc network. IEEE Trans. Veh. Technol. 2019, 68, 11309–11322. [CrossRef]

29. Ramezan, G.; Leung, C. A blockchain-based contractual routing protocol for the internet of things using smart contracts. Wirel.
Commun. Mob. Comput. 2018, 2018, 4029591. [CrossRef]

30. Kadadha, M.; Otrok, H. A blockchain-enabled relay selection for QoS-OLSR in urban VANET: A Stackelberg game model. Ad
Hoc Networks 2021, 117, 102502. [CrossRef]

31. Lwin, M.T.; Ko, Y.B.; Kim, D. When Blockchain Takes Care of the OLSR Network. In Proceedings of the International Conference
on Computer Communication and Networks (ICCCN), Valencia, Spain, 29 July–1 August 2019; pp. 1–2.

32. Lwin, M.T.; Yim, J.; Ko, Y.B. Blockchain-based lightweight trust management in mobile ad-hoc networks. Sensors 2020, 20, 698.
[CrossRef] [PubMed]

33. Laube, A.; Martin, S.; Al Agha, K. A solution to the split & merge problem for blockchain-based applications in ad hoc networks.
In Proceedings of the 2019 8th International Conference on Performance Evaluation and Modeling in Wired and Wireless
Networks (PEMWN), Paris, France, 26–28 November 2019; pp. 1–6.

34. Crow, B.P.; Widjaja, I.; Kim, J.G.; Sakai, P.T. IEEE 802.11 wireless local area networks. IEEE Commun. Mag. 1997, 35, 116–126.
[CrossRef]

35. Nguyen, D.; Minet, P. Analysis of MPR Selection in the OLSR Protocol. In Proceedings of the International Conference on
Advanced Information Networking and Applications Workshops (AINAW’07), Niagara Falls, ON, Canada, 21–23 May 2007;
Volyme 2, pp. 887–892.

36. Wang, T.; Zhao, C.; Yang, Q.; Zhang, S.; Liew, S.C. Ethna: Analyzing the Underlying Peer-to-Peer Network of Ethereum
Blockchain. IEEE Trans. Netw. Sci. Eng. 2021, doi:10.1109/TNSE.2021.3078181. [CrossRef]

37. Schäffer, M.; Di Angelo, M.; Salzer, G. Performance and scalability of private Ethereum blockchains. In International Conference on
Business Process Management; Springer: Berlin/Heidelberg, Germany, 2019; pp. 103–118.

38. Chen, X.; Nguyen, K.; Sekiya, H. Investigating Dynamic Mining Time of Private Ethereum Blockchain on IoT Devices. In Pro-
ceedings of the IEICE General Conference, Online, 9–12 March 2021.

39. Premsankar, G.; Di Francesco, M.; Taleb, T. Edge computing for the Internet of Things: A case study. IEEE Internet Things J. 2018,
5, 1275–1284. [CrossRef]

40. Chen, X.; Nguyen, K.; Sekiya, H. An experimental study on performance of private blockchain in IoT applications. Peer-to-Peer
Netw. Appl. 2021, 1–17. doi:10.1007/s12083-021-01148-9. [CrossRef]

http://dx.doi.org/10.1109/TII.2013.2245907
http://dx.doi.org/10.1109/TVT.2019.2943118
http://dx.doi.org/10.1155/2018/4029591
http://dx.doi.org/10.1016/j.adhoc.2021.102502
http://dx.doi.org/10.3390/s20030698
http://www.ncbi.nlm.nih.gov/pubmed/32012774
http://dx.doi.org/10.1109/35.620533
http://dx.doi.org/10.1109/TNSE.2021.3078181
http://dx.doi.org/10.1109/JIOT.2018.2805263
http://dx.doi.org/10.1007/s12083-021-01148-9.

	Introduction
	Related Work
	Background
	Ad Hoc Network and OLSR
	Ethereum

	Decentralization of IoT Blockchain System
	Motivation
	Decentralizing Underlying Blockchain Network

	Evaluation
	Experiment Setup
	Recovery Time
	Latency Performance

	Conclusions and Future Works
	References

